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This section has two primary purposes. The first is to help readers feel comfortable with 
taking languages as purely formal systems, i.e. as sets of objects with no "meanings" at 
all. What's important about these languages is their form, not how they communicate 
anything, since, with an exception to be noted below, they aren't intended to 
communicate anything at all. We will see later that regarding natural languages like 
English as formal systems seems to lead to surprising and interesting conclusions about 
the nature of the human mind. The second goal is to introduce various techniques for 
handling formal systems like these, and a vocabulary with which to talk about their 
properties. Before too long we will use these tools to analyze human languages. In the 
meantime, I urge you to relax and enjoy the puzzles I have prepared for you. 
 
1.1 Preliminaries 
 
 A set is an unordered collections of things.1  Sets can be specified in many ways. 
For example, we might represent the set, which consists of the first three letters of the 
roman alphabet as in (1). 
 
(1) 

 

ab
c

 
But this takes up a lot of space, and is expensive to print.  A better way, for practical 
reasons, is to write down the set's members or elements within curly braces.  This is 

 
1We have the Russian mathematician Georg Cantor (1845-1918) to thank for the fascinating field called set 
theory. Among its wonders is that one can conclusively prove that, although there are exactly as many odd 
integers as there are integers, and just as many integers as there are fractions (i.e. rational numbers), there 
are fewer rationals than there are real numbers (i.e. numbers representable by perhaps nonterminating 
decimals), in reasonably straightforward senses of "as many ... as " and "fewer". In other words, there are 
(at least!) two "sizes" of infinity. For entertaining discussions of this point, among others, see Delong 
(1971) and Hofstadter (1979). 
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sometimes called the list notation.  One way the set in (1) can be represented using this 
method is in (2). 
 
(2) {a,b,c} 
 

 To say that a is an element of the set in (2) we write "a    {a,b,c}".  If we 

were to give the set in (2) a name, say, A, we could write "a  A". 
 
 There are other ways the represent the membership of our set A, since the order of 
the presentation of the elements is irrelevant to the set's identity.  So the set in (3) is just 
another way of writing the set in (2). 
 
(3)  {b,a,c} 
 
We could also represent it as in (4), though this would be a bit perverse, since once we 
say that a is in the set, saying this over again doesn't change anything. 
 
(4)  {a,a,b,c} 
 
(The set of colleges in Northfield, Minnesota consists of Carleton and St. Olaf, no matter 
how many times I reiterate that Carleton is in this set.)  So here's two things to take to 
heart.  First, the one and only thing relevant to the identity of a set is its membership.2  
Second, most, if not all, concrete representations of sets are misleading.  Sets are too 
abstract to display with perfect fidelity. 
 
 Here's a bold move, laden with consequences we won't be able to explore here:  
We say that sets are things.  One immediate consequence of this is that sets can be 
members of other sets.  For example, the set {a, b, {a}} is a set that has three members: a, 
b, and the set that contains a.  How many members does {{a,b,c}} have?  (If you are not 
perfectly comfortable in answering "one", stop here and convince yourself.) 
 
 One way to specify sets that is less misleading is to use what is sometimes called 
the predicate notation.  Here, one uses a predicate, for example, be one of the first three 
letters of the roman alphabet, to characterize the set's members.  This is written as in (5). 
 
(5)   {x | x is one of the first three letters of the roman alphabet} 
 
(5) is read "the set of all x such that x is one of the first three letters..."  More generally, if 
P stands for any property, {x | x has P} will specify a set.3  In a more technical notation, 

 
2This is sometimes called the Axiom of Extension. 
3This is sometimes called the Axiom of Abstraction. One may be jittery about this innocent sounding 
principle. For it's pretty easy to think of properties whose corresponding sets seem a bit dubious. Consider, 
for example, the set R = {x | x is not a member of itself}. Members of R include perfectly respectable sets 
such as the set of books in the Carleton College library (which is not itself a book, of course). The set of 
pizzas in Northfield (at 10:00 pm yesterday), the set of students enrolled in Linguistics 110 (now), and the 
set of authors of The Sound Pattern of English all enjoy membership in R. However, asking about and 
trying to determine whether or not R itself is a member of R leads to a bit of vertigo. Never fear. See any 
introduction to set theory for a way out of this pickle. 
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we might write equivalently {x | P(x)} to be read as "the set of all x such that the property 
P holds of x".  Obviously, when sets get large, one will be inclined to make use of the 
predicate notation, and when one wants to specify an infinite set, this notation or 
something much like it will be mandatory, given the unfortunate finiteness of life. 
 
 What we might call the alphabet (in a kind of extended technical sense) for the 
writing system for the English language is a set of characters consisting of the letters a 
through z, the space, and a few punctuation marks.4  A string over this (or any other) 
alphabet is an ordered sequence consisting of members of the alphabet.  (6) contains six 
distinct strings over the alphabet described in this paragraph.5 
 
(6) a.  zzzzzzzz 
 b.  zzzz 
 c.  dog 
 d.  god 
 e.      m    
 f. 
 g. age often turns fire to placidity  
 
For strings, though not for sets, order and repetitions count in determining the string's 
identity.  So (6c) is distinct from (6d) (even though {d,o,g} and {g,o,d} are identical), and 
(6a) and (6b) are also distinct.  (6e,f) raise a sometimes troublesome point that we may as 
well get used to now. As we said above, the space is a character in the alphabet we're 
currently considering. Even though it is invisible, it is not nothing. (The space, for 
example, has an ASCII code6, but nothing, of course, doesn't.) Because of this, it's 
impossible to tell the exact identity of our strings in (6). To alleviate this problem, we 
might invent special symbols that serve to help us find the borders of our strings. For 
example, we might write (6e,f) as in (7a,b). 
 
(7) a. #  m# 
 b. #              # 
 
Notice that # is not in any of the strings we're trying to specify.  It is a symbol that we use 
to help us identify strings when they are written down, nothing more.  It's still a little hard 
to see what string we're trying to identify in (7b). To make such identifications easier, we 
might invent a symbol (not one from our current alphabet) and use it to mark a space. To 
give this maneuver the air of respectability it surely deserves, I'll choose the Greek letter 

sigma: .  On this easier-to-see version, (6e,f) look like (8a,b). 
 

(8) a.  #m# 

 
4I set aside the capital letters, and also the sensible observation that the space might itself be regarded as a 
punctuation mark, as might be things like paragraph breaks, and other conventions that indicate a writer's 
intent. 
5 (5g) is the first sentence in Stephen Jay Gould's essay "A Biological Homage to Mickey Mouse" reprinted 
in his (i.e. Gould's) collection The Panda's Thumb (W.W. Norton and Company, 1980). 
6 ASCII stands for American Standard Code for Information Exchange.  It is a system, which assigns every 
letter, number, punctuation mark, and other symbols a special standard number, so that different computers 
and different programs can read each other's text.  The ASCII code for the space is 32. 
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 b.  ## 
 
This is sort of like staining a cell to reveal the mitochondria.  It reveals, for example, that 
when I typed in the string (6f) I hit the spacebar fourteen times.  We'll come back to this 
two-level structure for specifying languages a bit later.  In the meantime, we'll assume 
that boundaries of all strings mentioned coincide with beginning and end of the visible 
portions of the string, and will therefore suppress the indication of string boundaries. 
 
 In a general, technical, and a bit misleading sense, we can think of a language as 
being a set of strings over some alphabet.  (We make no restriction on the size of this set.  
Most of the time, it will be infinitely big.)  Suppose we select the alphabet A (we might 
also call this the vocabulary) to be the set {a,b}. 
 
A = {a,b} 
 
 Now consider the set of all strings over this vocabulary.  (The set of all strings 
that can be formed by concatenating , i.e., stringing together, elements of some 
vocabulary V is sometimes called the free monoid on V (Wall (1972: 166).)  It will 
consist of strings such as those in (9). 
 
(9) a 
 b 
 aa 
 ab 
 ba 
 bb 
 aaa 
 aab 
 
 etc. 
 
Obviously, the free monoid has infinitely many strings in it, since if I give you a string of 
length n, you can give me a string of length n+1.  However, each string in this set is of 
finite length.  Notice, then, that one can have languages of infinite size even though each 
string in the language is finite.   
 
 A subset B of a set A is a set such that every member of B is a member of A.  (Is 
every set a subset of itself?)  So, for example, if B = {a,b} and A = {a,b,c}, B is a subset 

of A, but A is not a subset of B.  To express this in symbols, we write: A    B and 

B    A.  A set B is a proper subset of a set A (written B    A) if B  A and 
B≠A. 
 
 The empty (or null) set, symbolized ø, is a set that contains nothing.  (One could 
represent the null set like this:  { }.  But no one ever does this, except in contexts like the 
present one.)  However, even though it is empty, it, like the space, is not itself nothing.  
The empty set is a perfectly legitimate object.  For example ø ≠ {ø}, since the former 
contains nothing, but the latter contains something, namely the empty set.  The empty set 
is a subset of every set.  This is a bit counterintuitive, but one way to see it is to look at 
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from a negative point of view.  When is a set A not a subset of a set B?  Well, A is not a 
subset of B when A contains something that isn't in B.  Since ø doesn't contain anything 
at all, it can't be the case that ø has something that a set B doesn't, no matter what set we 
take B to be. 
 
Exercise 1 
 
True or False? 
 
a. {a} = a 

b. {ø}  {{ø}, ø}   

c. {a, b, {c}}  {Ø, {a, b, {c}}} 

d. {a,b}  {a,b} 

e. {a,b}  {a,b}  

f. ø  ø 

g. ø  ø   
 

The purpose of this section has been to introduce the very general notion of a language 

as a set of strings. At this point, you should understand this idea and also see how it might 
not be unreasonable to regard languages like English or Pashto7 as sets of strings of 
words. 
 

1.2 Generating Languages 
 
 Subsets of the free monoid mentioned in (9) will also be languages, since each of 
these subsets will also be a set of strings.  We can pick out (or, to use a more technical 
term, generate) one or another of these subsets by giving a criterion by which to 
recognize a member of the subset that we're interested in.  For example, consider the 
language L1, defined as in (10). 

 
(10)   L1:   Vocabulary = {a,b} 

  Criterion:  A string s is in L1 if and only if the first character of s is an a. 

 
 Imagine a device embodying these characteristics inspecting candidate strings and 
then reaching a decision, yes or no, to the question of whether or not the candidate is a 
member of L1.  In this case, the first character must be an a, and each of the other 

characters must be either an a or b.  If, for convenience, we restrict candidates to 
members of the free monoid described in (9), we get the following results.8 
 
(11) a 
 *b 
 aa 
 ab 
 *ba 

 
7 Pashto is spoken in Pakistan and Afghanistan 
8 Of course, any candidate that isn't in the free monoid in (9) will be rejected. 
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 *bb 
 aaa 
 aab 
 
 etc. 
 
The prefixed asterisk means that the candidate is not in the target language. 
 
 Let's pause for a moment to ask a more "psychological" kind of question, by 
anthropomorphizing a bit.  Imagine that we're introduced to a computer, which "speaks" a 
particular language, in other words, among other things, the computer will be able to tell, 
for any candidate string we propose, whether or not that string is in the machine's 
language. Perhaps some readers of this text have experienced this first hand. If you type 
an instruction to a computer, which it doesn't recognize, it will usually let you know in no 
uncertain terms, as in the following example I created many years ago on a computer 
which “spoke” Digital Command Language: 
 
$ sek carls 
%DCL-W-IVVERB, unrecognized command verb - check validity and spelling 
 \SEK\ 
$  
 
This example might seem quaint by today’s standards, since most people don’t interact 
with machines in this way anymore. But the point here is that the machine contains some 
information which specifies the words and syntax of a language it uses to interact with 
the outside world, and if you tried to interact with it in any other way, it would tell you 
something like ‘what you just said to me was jibberish, try again if you dare’.  
 

If we were interested in the machine's linguistic capacities, we could adopt two 
closely related goals. The first is to discover what language the machine recognizes. To 
do this, we might propose various strings to the machine and see what happens, carefully 
noting which are accepted and which rejected, and then try to write a grammar of the 
language, which, to the extent that we get it right, should correspond in some fairly 
straightforward way to something that is actually in the machine.9 Notice that it wouldn't 
be at all helpful at this juncture to simply go over to the CMC and start taking the 
machine apart, looking for the grammar of its language, since, in terms of all the little 
gizmos and whatnots inside the machine, we don't have the faintest idea what we're 
looking for. Likewise, if I'm interested in your linguistic capacities, it won't help very 
much to carefully remove the top of your skull and go rummaging around in the hills and 
valleys of your cerebral cortex. I need to know a lot more about what I'm looking for and 
how it's likely to be represented in there. In other words, our characterization of the 
language will be abstract, in the sense that we will focus on a disembodied system, a 
system we want to describe independently of the hardware it happens to be instantiated 
in. So one goal is to give an abstract characterization of the language "known" by the 
machine. 

 
9 Naturally, in the case of artificial machines and languages, there are people around whom we could 
simply ask, a route that, so far as I know, isn't available in the case of human beings and the languages they 
speak. 
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 The second goal we may wish to adopt is to specify what a machine has to be like 
in order to handle the languages that it does. To adopt this stance is to shift the focus of 
the inquiry away from the languages for their own sake and toward the machines, which 
acquire and use them. Once we get a reasonable description of the language our machine 
speaks, we might ask what other languages it could have spoken had it only had the 
appropriate sorts of interactions with its environment. We might discover that languages 
fall into classes, and some machines handle some classes easily but that there are other 
classes that the machines don't recognize very easily or maybe can't recognize at all. To 
focus on this sort of thing would be to use the languages as window into the nature of the 
machines. We might say, this kind of machine recognizes such and such kind of 
languages very easily, but can’t manage these other sorts of languages. Presumably this 
would be so because of how the machines are designed, that is to say the nature of their 
structure before we give them any language at all. This maybe won't be such a fascinating 
adventure in the case of our computers, but for humans and their languages, well, it's a 
different story, as we will see. 
 
 Returning to our example in (11) above, supposing that the computer's language is 
infinite, we will only be able to make a reasonable guess at the identity of the language, 
but that will be good enough for us.  Also, since the computer itself is finite, the 
"program" that we propose for its "mental" computations will have to be finite, since, of 
course, it is instantiated in the finite computer. Suppose that we typed in the candidates in 
(11) and received the responses indicated there, i.e. the computer responds "yes" to 
a,"no" to b, "yes" to ab, etc.  What we do now is write some kind of a flow chart that 
mimics the computer's responses.  We'll then take what is sometimes called a "realist" 
stance (more on this later), and attribute to the machine the properties of our model.   
 
 Here's one way of representing a model that will do the job in this case.  These 
systems are sometimes called finite state automata, a notion we will make more precise 
in a moment.  Consider then an automaton that will generate the language L1 of (11). 

 
(12)   

   

a

a

b
S0 S1

 
 
Here's how to interpret this diagram.  The circles represent states of the machine.  
Concentric circles indicate special states, called final states.  The lines and loops, called 
arcs, represent instructions on what the machine should do given a particular input.  The 
machine always starts in an initial state, S0, and contemplates the first (i.e. leftmost) 

character of the candidate string.  Suppose our machine is looking at the string aba.  
Since the first character matches the label on the arc leading away from S0, the machine 

"accepts" the a, switches into state S1, and examines the next character in the string, 

which in our example is b.  This matches the label on one of the loops leading away from 
S1.  Therefore, the machine follows the loop, accepting the b, returns to S1, and examines 
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the next character in the string, an a.  Now the machine follows the other loop, accepting 
the a and returning to S1.  At this point the machine runs out of candidate string.  The rule 

in this case is that since the machine is in a final state, the candidate is accepted.  The 
machine then flashes "yes" on the monitor, and waits for the next candidate. 
 
 Suppose now we type in ba.  The machine starts out in S0, and inspects the b.  But 

there is no arc leading away from S0 labeled with a b.  So the machine cannot accept the 

b, and will then stop and print "no" on the monitor. 
 
 Let's consider a slightly different automaton, the one in (13). 
 
(13) 

  

a

a

b
S0 S1

b

 
 
What language will this automaton accept?  First of all, it will obviously accept all the 
strings accepted by the automaton in (12), since (13) has all the paths that (12) has, and 
more besides.  The new path is the loop labeled b on the state S0.  (13) will accept the 

string ba, since it can loop on the initial b back into S0, switch to the final state S1 on a, 

thus stopping in a final state.  On the other hand, the machine will reject bbb, since 
though the machine will accept the entire string, it won't be in a final state at the end. 
 
 Let's describe finite automata (abbreviated fa) more generally.  Fa's have a finite 
number of states, linked to each other by a finite number of labeled arcs.  The arcs are 
instructions telling the machine what to do when it encounters a particular input , e.g. 
"accept it and move to state Sn".  For the machine to recognize anything, at least one of 

the states must be a final state.  There are no other restrictions.  Fa's can have any (finite) 
number of initial and final states, and these can be connected by any (finite) number of 
arcs.   
 
 By specifying the fa that generates the language of the computer we were 
introduced to a few paragraphs back, we've made a proposal concerning the abstract 
characterization of the relevant portion of the machine's "mind". 
 
 We might digress here briefly to anticipate what relevance all of this will have to 
our primary objective, which is, as you'll recall, to describe human languages and the 
minds that "know" them.  We can think of natural languages like English as (among other 
things) infinite sets of strings of words.  For the moment, think of the words in English as 
atomic units.  (We'll return later to investigate their internal structure.)  So, the, running, 
sleeps, baby, computer, have, etc. are all items in the English vocabulary, analogous to 
the set {a,b} in our language L1 above.  Suppose we took the set of words in any ordinary 
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dictionary, added in a few proper names, formed some strings over this set, and presented 
those strings to a person who knows English.  We will likely get results like this10: 
 
(14) a.  babies sleep in cribs 
 b.  *sleep babies cribs in 
 c.  colorless green ideas sleep furiously 
 d.  *furiously sleep ideas green colorless 
 e.  do you often walk to school 
 f.  *walk you often to school 
 g.  the pen that I lost was expensive 
 h.  I don't know where my pen is 
 i.  *the pen that I don't know where is was expensive 

j.  how Ann Salisbury can claim that Pam Dawber's anger at not receiving her fair      
share of acclaim for Mork and Mindy's11 success derives from a fragile ego 
escapes me. 
k.  *how Ann Salisbury can claim that Pam Dawber's anger at not receiving her 
fair share of acclaim for Mork and Mindy's success derives from a fragile ego 
escape me. 

 
Putting aside for awhile the question of whether or not this point of view is particularly 
illuminating, we could regard our English speaker as being rather like the computer we 
considered a moment ago, in at least this respect:  The person is a finite object, capable of 
deciding, for any given string over the English vocabulary, whether or not the candidate 
string is in English or not.  We might then try to write a description of the mechanism the 
person possesses that accounts for this skill.  Furthermore, we might find it convenient 
(or even necessary) to couch this description in abstract terms, that is, in terms that are 
independent of the person's "hardware" (e.g. neural organization and electro-chemical 
flows in the brain).  In other words, we might end up with a description analogous in 
some ways to our theory about the internal organization of the computer.  This is one of 
the central problems of linguistics theory, and we will have much to say about it later.  
For now, though, let's return to our investigation of finite automata. 
 
 (16) is a representation of an fa that will generate the language in (15). 
 
(15) a 
 aba 
 ababa 
 abababa 
 
 etc. 
 

 or more accurately and succinctly, a(ba)n, n ≥ 0.12 

 
10 Examples (14c,d) are very famous examples from Noam Chomsky's first book, Syntactic Structures 
(1957).  (14j,k) were cited by Lila Gleitman in her paper "Maturational Determinants of Language Growth" 
(1981).  As Gleitman noted, (14j) originally appeared in a letter to TV Guide. 
11 Mork and Mindy was a wacky television sitcom from the late 1970’s and early 1980’s, starring Robin 
Williams (and of course Pam Dawber). If you don’t believe me, go to 
http://www.sitcomsonline.com/morkandmindy.html 
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(16) 

   

S0 S1

a

b  
 

(17) is an fa that will generate the language abna, n ≥ 0. 
 
(17) 
 

  

a
S1S0

a

b

S2

 
 

(18) generates (ab)n, n ≥ 0. 
 
(18) 

   
Notice that (18) will also recognize the empty string. 
 
Exercise 2 
 
Every fa we've seen so far generates an infinite language.  Of course, there are fa's that 
recognize finite languages.  Give an example of one by modifying any of the fa's we've 
seen so far.  Try to give a procedure to check, given any fa at all, whether or not that fa 
recognizes an infinite language. 
 
Exercise 3 
 
Describe (in English) the language generated by each of the following fa's. 
 

 
12 The superscript n indicates that the sequence in parentheses, in this case, ba, can be repeated n times. 
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a. 
 

  
 
b. 
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Exercise 4 
 
Draw fa's for each of the following languages: 
 

a. aba
n

c n ≥ 0.  

 

b. ac
m

(ba)
n, n,m ≥ 1 

 
Exercise 5 
 
Take words in English to be atomic units, analogous to the letters a and b in the examples 
above.  (That is to say, suppose words have no internal parts.)  Draw a fa that generates 
exactly 13the language that consists of the following strings: 
 
 books have pages 
 some books have pages 
 books have many pages 
 this book has pages 
 this book has many pages 
 
Exercise 6 
 
Consider a language like the one in Exercise 5, except that sentences such as the 
following are in it as well: 
 
 this book has many many pages 
 this book has many many many pages 
 this book has many many many many pages 
 
Suppose that arcs are costly, say, in terms of memory space in a computer.  
(Alternatively, you can imagine that I charge you ten cents for each arc in the fa you 
draw.)  I give you a choice:  You can either draw an fa for  
 
a. the language in which many can be repeated as many as thirty eight times (this 
language will have finitely many sentences in it)    
 
or  
 
b. the language in which many can be repeated unboundedly many times (this language 
will have infinitely many sentences in it). 
 
Say which language would you choose to draw an fa for, and why. 
 
Exercise 7 

 
13Exactly here means that the language generated consists of all the sentences given, and that the language 
contains no other sentences.  We say that the fa you draw generates all and only the sentences given. 
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It's easy to draw an fa for the language anbm, n,m ≥ 1.  Do it.  However, not only is it 

difficult, it's flat out impossible to draw an fa for anbn, n ≥ 1 (i.e., where there must be 
exactly the same number of a's and b's in each string).  Sketch out how you would draw 

an fa for anbn for any finite n, and indicate what the problem is when n can get 
indefinitely large. 
 

In this section we've seen how one can specify (or recognize or generate) an infinite 

language using a finite mechanism. We've also had a glimpse of how one might use the 
linguistic capacities of a thing (machine or organism) to approach the question of what 
sort of mechanisms has to be inside the thing. A finite state automaton is a particularly 
simple representation of a language recognizing capacity, so simple in fact that there are 
well defined languages which no fa, no matter how large, can recognize. (Thus a thing 
that recognizes one of these languages can't have (merely) an fa inside.) 
 

1.3 The MIU system14 
 
 The MIU system generates a language, in the sense of "language" we have been 
using so far. We examine it solely for the purpose of extending our technical apparatus 
and conceptual framework. The vocabulary for the MIU system is {M,I,U}.  The system 
has four rules. 
 
Rule 1:  If you have a string whose last letter is I, you can add a U at the end. 
 
 In more abbreviated form:  xI => xIU 
 
The x in this abbreviation is a variable.  Of course, no string in the MIU system looks 
like "xI" since "x" is not even in the vocabulary.  The "x" here is to be regarded as a 
variable over strings of symbols that are in the vocabulary. 
 
 This is perhaps a good time to introduce the important distinction between an 
object language and a metalanguage.  If I talk about the mighty Carleton Knights, there's 
no danger of confusing the Knights with my talk about them.  But if I'm talking about a 
language, I should be careful to distinguish the language I'm talking about (the object 
language) from the language I'm talking in (the metalanguage, i.e. the language used to 
talk about the object language).  In this case, the object language is the one generated by 
the MIU system.  The metalanguage, in the first version of the rule, is English.  In the 
rule's abbreviation, the metalanguage is a special one that I use to shorten, and thus make 
more readable, the English version of the rule. Recall (6e,f) and their representations 
(8a,b): 
 
(6) e.   m 
 f. 
 

(8) a. #m# 

 
14This system was invented by Douglas Hofstadter and you can read about it and very many other 
interesting things in his book Gödel, Escher, Bach: An Eternal Golden Braid (Hofstadter 1980). 
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 b. ## 
 

The items "m" and " " (i.e. the space) are in the object language. But "#" and "" are not 
in the object language. They are in the metalanguage. 
 
 We will have much to say about metalanguages later on.  For now, though, it's 
worth observing that it is easy to change the metalanguage dramatically while leaving the 
object language alone, just as snow falls in Northfield no matter how we choose to talk 
about it.  For example, Rule 1 says that if I have a string such as IUMMI, I can form a 
new string in the language by adding a U on the end, i.e. IUMMIU.  However, if I were 
writing for a Dutch speaking audience, most likely I would have chosen a different 
metalanguage, namely Dutch.  Here's Rule 1 in that language: 
 
Regel 1:  Als je een rij hebt met als laatste letter een I, dan kun je een U aan het eind 
 toevoegen. 
 
 Afgekort:  xI => xIU 
 
This change might seem quite dramatic, but the important point to note is that the object 
language doesn't change at all.  This rule still adds a U to any string that ends in an I.  For 
now, we will regard the choice of metalanguage as a matter of convenience, and we will 
feel free to modify metalanguages at will, changing them to suit our purposes or 
whenever the spirit moves us.  Later on, we will see that the choice of a metalanguage for 
describing natural languages such as English, Tamil, and Hausa in linguistics is crucial, 
and can in fact be thought of one of the central problems for the discipline. 
 
 Let's now return to the MIU system. 
 
Rule 2:  Suppose you have Mx.  Then you may also form Mxx. 
 
 Abbreviation:  Mx => Mxx 
 
This rule will take MIUU into MIUUIUU.  It takes everything to the right of the initial 
M and adds a copy of that to the right of the original string.  One thing to notice here is 
that since no variable appears to the left of the M, the M must be the first symbol in the 
input string.  So this rule will not apply to a string like IMU. 
 
Rule 3:  If III occurs anywhere in a string, this substring (i.e. part of a string) may be 
 replaced with a U. 
 
 Abbreviation:  xIIIy => xUy 
 
Rule 3 will change, for example, MIIIUI into MUUI.  Notice here that I have chosen 
two distinct variables, x and y, to indicate that there may be substrings on either side of 
the three adjacent Is.  I don't want to require that these substrings be identical, which I 
would imply if I had written xIIIx => xUx.  The intention here is that the substring 
flanking the target (i.e. the material to be affected by the rule, in this case, III) may be 
identical, but they needn't be.  So this rule could apply to MUIIIMU, changing it to 
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MUUMU.  If I had written the rule with two x's flanking the target, then this is the only 
kind of input the rule could apply to.  Also it is to be understood that either of the 
variables (or both) could be null, that is, there needn't be a substring that the variable is 
standing for.  For example, Rule 3 will apply to IIIUM, changing it to UUM. 
 
 The last rule is 
 
Rule 4:  If two adjacent U's appear in a string, they can both be deleted. 
 
 Abbreviation:  xUUy => xy 
 
This rule would take, for example, MUUI into MI. 
 
 Notice that, given a string, there may be more that one way for a rule to apply to 
it.  To describe this, let's introduce a bit more terminology.  Let's call the specification of 
possible inputs to a rule, the left side of the arrow in the abbreviations, a structural 
description.  What a structural description does is pick out a class of objects to which the 
rule can apply.  This is actually a commonplace concept.  For example, some businesses 
offer discounts to people who are 65 years of age or older.  In our terminology, "being at 
least 65 years old" would be the structural description of the rule which results in a 
discount, and we can speak of people meeting or failing to meet that description.  
Likewise, we can say that MUUI meets the structural description of Rule 4, but MUIU 
does not.  The right side of the double arrow, the instruction that specifies what to do if 
the structural description is met, we can call the structural change.  
 
 In order to determine whether or not a string meets a structural description, we 
factor it.  This simply means to divide up into its parts, but as in factoring numbers in 
arithmetic, there are usually many different ways to do this.  Some factorizations may 
satisfy a given structural description while others may not.  For example, consider the 
string MIUUUI.  There are many factorizations of this string, some of which are given in 
(19) (I put a between factors): 
 
(19) a. M IU U  UI 
 b. MI  UU  UI 
 c. MIU  UUI 
 d. M  IU  UU  I 

 e. MIU  UU  I 
 
We say, for example, that analysis (19a) yields four factors M, IU, U and UI.  Analysis 
(19b) yields three factors, (19c) gives two factors, etc.   
 
 Suppose we read Rule 4 as specifying that in order for the rule to apply, strings 
must be factorable into three substrings, the first and last of which can be any string at all 
(including the null string) while the middle substring must consist exactly of two Us.  On 
this reading, analyses (19b and e) will both satisfy the structural description of the rule, 
but the others will not.  So, technically speaking, our rules apply to strings under an 
analysis, not just strings.   
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Exercise 8 
 
Consider the string MUUIUUI.  Give all the factorizations that meet the structural 
description of Rule 4, and in each case give the result of applying the structural change. 
Do the same for the string MUUUI. 
 
  
 I now repeat the rules of the MIU system here in their abbreviated form: 
 
Rule 1:  xI => xIU 

 
Rule 2:  Mx => Mxx 
 
Rule 3:  xIIIy => xUy 
 
Rule 4:  xUUy => xy 
 
Of course, so far this system doesn't generate anything at all, since all of these rules have 
the form of if - then statements.  You can't apply any of these rules until you have a string 
to apply them to.  We need a starting point, which we will call the initial string.  Here it 
is:  MI. 
 
 We can think of this system as licensing derivations.  A derivation is a 
demonstration that a particular string is in fact in the language generated by the system.  
The form of a derivation is a sequence of lines, each of which follows from the one above 
it by one of the rules, except for the first line, which is always the initial string.  We say a 
given derivation is a derivation of the last line in the sequence.15 So in the MIU system, 
every derivation begins with MI.  Then we apply one or another of the rules in order to 
produce a new string, to which we can again apply one or another of the rules to produce 
another new string, etc.  Each string so produced is shown to be generated by the MIU 
system. 
 
 Here's some derivations in the MIU system.  (To make derivations easy to check, 
we'll adopt the convention that we indicate next to a line the rule, which was used to 
derive it from the line above.) 
 
(20) a. 1. MI  initial string 
  2. MIU (1) 
  3. MIUIU (2) 
 
 b. 1. MI  initial string 
  2. MII  (2) 
  3. MIIII (2) 
  4. MIIIIU (1) 
  5. MIUU (3) 
 

 
15 Actually, derivations have different forms in different systems  We will examine some variations on this 
theme shortly.   
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 c.  1. MI  initial string 
  2. MII  (2) 
  3. MIIII (2) 
  4. MIIIIIIII (2) 
  5. MUIIIII (3) 
  6. MUUII (3) 
  7. MII  (4) 
 
 There are several things to notice.  The rules may apply in any order (so long as 
their structural descriptions are met, of course).  If two or more rules are applicable to a 
given string, any of the rules may apply, but they must apply one at a time.  It sometimes 
may happen that the application of one of the rules may destroy the environment for the 
other to apply. This often happens in the description of natural languages, and linguists 
call such an order of rules a bleeding order. If a rule applies so as to make it possible for 
another rule to apply, we call it, you guessed it, a feeding order.  For example, both rules 
1 and 3 will apply to MIII, but application of rule 3 will destroy the chance for rule 1 to 
apply i.e. rule 3 will bleed rule 1 in this case.  Derivation (20c) is a bit perverse, as it 
derives MII in seven steps, when it could have been derived in two, as the derivation 
itself shows.  Perverse or not, however, it is a perfectly fine derivation.  It may be 
stylistically inept, but it is nevertheless a legitimate demonstration that MII is generated 
by the system.  This example also shows that there in general is more than one derivation 
for each string, so there is no such thing as the correct derivation of a string.   
 
 As one gets good at doing derivations, it is tempting to collapse steps.  For 
example, for (20b) an experienced MIUer might be inclined to write: 
 
 
 
  1. MI  initial string 
  2. MIIII (2,2) (for two applications of Rule 2) 
  3. MIUU (1,3) 
 
 There's nothing really wrong with this short hand, except that such derivations can 
be difficult for less experienced players to read.  So, in the interest of politeness, we 
hereby make such abbreviated derivations illegal.  When you are asked to give a 
derivation, as in exercise 8, write out every step. 
 
 When doing derivations, it is sometimes helpful to work from both ends.  For 
example, suppose I am asked to derive MIUIUIUIU.  I might not see how to get this 
right off, so I might reason as follows.  I could derive this string by rule (2) if only I could 
derive MIUIU, so my problem now reduces to deriving this string.  Thus I have so far: 
 
  MI 
 
 
 
  MIUIU 
  MIUIUIUIU    (2) 



Linguistics 115 Text, 18 

 
I see that U's are introduced by rule 3.  Thus, I apply rule 3 "backwards" to the current 
line twice: 
 
  MI 
 
  MIIIIIIII 
  MIUIIII  (3) 
  MIUIU  (3) 
  MIUIUIUIU (2) 
 
Now it's clear that I can get to MIIIIIIII by repeated applications of rule 2: 
 
  MI   initial string 
  MII   (2) 
  MIIII   (2) 
  MIIIIIIII  (2) 
  MIUIIII  (3) 
  MIUIU  (3) 
  MIUIUIUIU (2) 
 
 
 
 
 
 
 
 
 
 
 
Exercise 9 
 
Show that the following strings are generated by the MIU system, by displaying 
derivations for them. 
 
 a.  MUI 
 b.  MIIUU 
 c.  MUUUI 
 
  
 

 Suppose that I gave you the string UIM and asked you to decide whether or not 
this string is generated by the MIU system.  One thing you could do is sit down with a 
pad of paper (better make it a big one!) and start doing derivations, hoping that sooner or 
later (hopefully sooner) the string will show up and you can triumphantly report "yes".  
Nevertheless, I venture to think that no one, at least no one who has done exercise 9 
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would dream of resorting to this tactic, since it's plain that this string will never, ever 
show up, no matter how long you sat doing derivation after derivation. 
 
 It's useful to formulate explicitly how we know that UIM will never appear as a 
line in a legal derivation.  The trick, of course, is to stop working within the system and 
instead look at it.  In this case, we consider rule 1, and observe that if the input to this 
rule has an initial M, the output will as well.  Rule 1 is "initial M preserving".  Rule 2 
requires an initial M as a part of its structural description, and returns a string that 
maintains it.  So it is "initial M preserving" too.  It's easy to see that rules 3 and 4 also 
have this property.  Since the one and only initial string has an initial M, and all of the 
rules are "initial M preserving", it follows that every string generated by the MIU system 
will have an initial M.  From this general theorem, the fact that UIM is not among the 
strings generated by the system follows as a trivial corollary. 
 
 The preceding paragraph must seem like an exposition of the obvious, but in other 
cases it is not always so clear whether or not a given string is generable by a given 
system.  When faced with such a problem, it's often a good strategy to first work within 
the system for awhile hoping that you suddenly see how to generate the string.  If this 
doesn't work, the next thing to try might be to think of a property the string has that you 
can show is possessed by no string generable by the system.  That would tell you that the 
string is not generable.  The more complicated systems get, however, the harder it is to 
tell whether or not some strings are generable by those systems.  In some cases, in fact, 
one can show that there is no procedure that will work every time.  Further discussion of 
this would take us too far afield, but those who are intrigued might begin to investigate 
this with one of the math or logic books mentioned in the bibliography. 
 
Exercise 10 
 
Say why MUIM is not generable by the MIU system.  (As mentioned above, one way to 
do this would be to demonstrate something stronger than you need, and then observe that 
the result you want trivially follows from this.  For example, one might try to show 
something about the number of Ms that can appear in a string.) 
 
Exercise 11 
 
Consider the string MU.  If it is generable by the system, give a derivation.  If not, 
demonstrate this.  (This problem may be a bit challenging.  It is a rewarding exercise not 
to give up on it too easily.  Give yourself a good chance to solve the problem.  For 
discussion of it, see Gödel, Escher, Bach.) 
 
 

Before going on to more interesting languages and techniques for describing them, let's 

pause to summarize some of the points mentioned in this section.  We saw how languages 
could be thought of as sets of strings, and how we can precisely specify the membership 
of infinite languages in a finite way.  This is useful, since natural languages like Hebrew 
can be thought of as infinite sets of strings of words, while the organisms that "know" 
these languages are finite.  Finite State Automata are very simple systems for generating 
languages.  We've also seen how one can generate infinite languages like the MIU system 
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by writing finite sets of rules.  We distinguish between the language generated (the object 
language) and the language in which the rules are written (the metalanguage).  Rules of 
the sort we examined have two parts:  structural descriptions, which specify the class of 
objects to which the rules can apply, and structural changes, which specify what the rule 
does.  Membership in a language can be demonstrated by a derivation, while 
nonmembership is most often demonstrated by constructing an argument from outside of 
the system, which is based on the nature of the rules.   
 
 Here's a list of some terminology that may have been unfamiliar to you before 
reading this chapter.  Be sure you have a pretty clear idea of what each term means before 
you proceed. 
 
 set  member  alphabet (or vocabulary)    
 string  language  (proper) subset 
 free monoid generate  finite state automata 
 variable object language metalanguage 
 substring structural description structural change 
 strings under an analysis  derivation 
 
 
 

1.4 The Propositional Calculus 
 
 The languages we have considered up to now have been purely pedagogical 
devices.  We have examined them for no other reason than to illustrate certain basic skills 
in manipulating systems that specify languages.  We'll turn now to a language (actually, a 
class of languages) that has a more distinguished pedigree, even though our main interest 
is still in acquiring skills for building systems for describing the syntax of languages. 
 
 The Propositional Calculus (sometimes also called the Propositional Logic, the 
Sentential Calculus (or Logic), or the Theory of Truth Functions) was first discussed at 
some length by the Stoic philosophers, who flourished in Greece and nearby regions 
around the time of Aristotle (3rd and 2nd century B.C.).  Much of this work was lost or 
ignored in Europe in the Middle Ages and through the Renaissance, and the system was 
reinvented by the German philosopher and mathematician Gottlob Frege in the latter half 
of the 19th century.  Frege's presentation of the system in his Begriffsschrift (Frege 1879) 
is commonly regarded as the beginning of the modern era of the study of logic.  (For very 
interesting accounts of these events, see Delong 1971 or Prior 1962.) 
 
 We will postpone for now consideration of why this system was regarded as so 
interesting, and concentrate instead on manipulating the syntax of it so as to acquire more 
tools for the analysis of natural languages.  In fact, we will not consider Frege's syntax 
for the system at all, as it is rather awkward and doesn't play any role in current day 
linguistic analyses.  We'll instead explore various deployments which are closely related 
to (and sometimes identical with) treatments that appear in many present-day logic 
textbooks, most of which descend from the systems as they were presented in Principia 
Mathematica, the great three volume work on logic and mathematics written by Alfred 
North Whitehead and Bertrand Russell and published between 1910 and 1913. 
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 I mentioned a few pages back that linguists are keenly interested in the 
metalanguages that are used to describe object languages (object languages such as 
English, Chinese, Hungarian, etc.).  Our goal here is to take the comparatively simple 
language of the propositional calculus and introduce a number of devices and techniques 
that may be helpful in explicating the structure of a wide variety of languages.  Later on, 
we'll see how some of these devices and techniques can be applied to natural languages. 
 
 Another way in which the propositional calculus differs from the languages we've 
considered so far is that it has an intended interpretation.  By that I mean that most of the 
symbols in the system are really symbols in the sense that they are meant to stand for 
something outside the language itself.  We will informally introduce aspects of this 
interpretation as we go along, primarily because this will suggest why some of the 
symbols are named the way they are. 
 
 
1.4.1 The Syntax of the Propositional Calculus by means of a Recursive Definition 
 
 The vocabulary of the propositional calculus consists of three parts.  The first part 
is a set of propositional variables or atomic sentences (i.e. sentences which have no 
internal parts).  These are letters (we will use p, q, and r) that stand for propositions.  
Roughly speaking, and setting aside some controversies, a proposition is something that, 
given a situation, is either true or false.  We might at first be inclined to identify 
propositions with sentences in a language such as English.  For example, when I am in 
my office, we say, "The sentence 'Flynn is in his office' is true", and we say the sentence 
is false when I am someplace else.  But there is some reason to think that propositions are 
more mysterious abstract entities.  Sentences can be ambiguous, such as the oft cited 
"Visiting relatives can be boring", in which case we might be inclined to say that the 
sentence expresses two propositions.  Also, two different sentences can express the same 
proposition, as in "Matsui hit a home run" and "A home run was hit by Matsui".  By 
"expressing the same proposition" I mean that we know without having to check that if 
one of these sentences is true, the other is as well, and likewise with falsity.  Further, it 
seems clear that two sentences drawn from different languages can express the same 
proposition.  Consequently, it appears that there is not a one-to-one correspondence 
between the propositions and the sentences in natural languages, and therefore we 
hesitate in identifying them.   
 
 Loosely speaking, propositions are the "meanings" of sentences.  If a sentence has 
two meanings, we say it expresses two propositions.  If two sentences express the same 
meaning, we say they express the same proposition.  For now, we will discreetly slide 
interesting questions about the nature of propositions under the rug. Here's all we know 
about them:  propositions are expressed by sentences, and, given a situation, they are true 
or false.  So we let our propositional variables stand for propositions.  For example, we 
might let p stand for the proposition expressed by the sentence "Snow is falling (here, 
now)".  Sometimes this will be true, sometimes false. 
 
 The second part of the vocabulary for the propositional calculus is the set of 
connectives.  These apply to sentences to form other sentences.  For our purposes, we will 
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use only three of these.  (Later on, we will consider other connectives and their relation to 

these three.)  We will have one one-place connective: .  This is the connective for 
negation and is read "not".  We will also have two two-place connectives: & (read: "and") 
which is sometimes called conjunction , and v (read; "or") which is sometimes called 
disjunction.  The distinction between one-place and two-place connectives will become 
clear in a moment. 
 
 The third part of the vocabulary consists of the punctuation marks ( and ). 
 
 A definition is something that gives instructions (implicitly or explicitly) how to 
distinguish the thing being defined from everything else.  A recursive definition is one 
that sort of "looks back on itself", much as rules in the MIU system could apply to their 
own output.  The following recursive definition of membership in the language of the 
propositional calculus, which we will call PL, has some rules of the if-then variety (Rules 
2-4) and a basis rule (Rule 1) which gives us initial strings: 
 
Rule 1:  p, q, and r are sentences in PL. 
 

Rule 2:  If  is a sentence in PL, so is . 
 

Rule 3:  If  and  are sentences in PL, so is (&). 
 

Rule 4:  If  and  are sentences in PL, so is (v). 
 
Rule 5:  Nothing is in PL except as specified in Rules 1 through 4.16 
 
This system licenses derivations like the MIU system did.  For example: 
 
1. p  [1] 

2. p  line 1, [2] 
3. q  [1] 

4. (p&q) lines 2,3 [3] 

5. (pv(p&q)) lines 1,4 [4] 
 
 
 There are a few differences between the PL system and the MIU system.  For one, 
the rules for PL sometimes take as input two sentences, and therefore it will in general 
not be the case that a particular line in the derivation is licensed by a rule and the 
immediately preceding line.  This calls for a change in our bookkeeping system.  Next to 
each line, we now write the numbers of the all the lines, which serve as input and the 
number of the relevant rule in square brackets.  Otherwise things are very much the same 
as before.  Rules are unordered and may apply anytime their structural descriptions are 
met, except now the structural descriptions are stated in terms of a feature of derivations 
that is (as yet) implicit, namely that every legal line in a derivation is a sentence in PL. In 

 
16 We include Rule 5 here just to be explicit that rules 1 through 4 exhaust PL, but from now on we'll take 

this clause, which is sometimes called the "restriction" for granted.   and  are of course variables in the 
metalanguage, here ranging over sentences in PL. 
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the above example, lines 1 through 4 is a demonstration that (p&q) is a sentence, and 
this fact is exploited by step 5.   
 
 One principle worth mentioning here, even though it may seem completely 
obvious, is what I will call The Formality Constraint.  This principle says that  
 

OONNEE  CCAANN  OONNLLYY  DDOO  WWHHAATT  TTHHEE  RRUULLEESS  SSAAYY..      
 
Obvious as it may seem, this sometimes causes problems, especially in this case for 
people who have worked with some version of PL before.  For example, some might be 
tempted to write line 4 in the above derivation as  
 

     p&q 

 
but this, as President Nixon used to say in another context, would be wrong.  Rule 3 says 
one must include parentheses, and so, one must.  There's a good reason for this feature of 
the system (which we'll see a bit later on) but for now, take the Formality Constraint to 
heart. One corollary of the Formality Constraint is important to notice. If you want a 
system to do something, you need a rule, or at any rate some sort of a licensing 
procedure, that permits it. Another way to put this is that every step in a derivation must 
be licensed by an explicit statement in the recognizing system. 
 
Exercise 12 
 
One reason the Formality Constraint is important is this:  If you are trying to write a 
system that will generate a language, if you don't observe the Formality Constraint you 
likely won't be able to tell if what you propose really does what you think it does, and this 
might set you off on wild goose chases that last hours or even decades.  It is therefore 
wise to try to keep the Formality Constraint in mind.  Write out the Formality Constraint 
fifty times.  (Don't hand this in.)  Have a close personal friend tattoo the Formality 
Constraint on the inside of your forearm. 
 
Exercise 13 
 
PL has infinitely many sentences in it.  Write out a demonstration of this. 
 
Exercise 14 
 
Give derivations of the following sentences: 
 

a. (p&(qvr)) 

b. (qvq) 

c. (r&(q&(p&(r&p)))) 

d. ((pvq)&(qvr)) 

 
Exercise 15 
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Parentheses, as you may have noticed, are introduced in pairs.  For the sentence (c) in 
exercise 14, connect with an arc each parenthesis with its "sibling" so that you get a 
picture sort of like a set of kitchen bowls. (This may seem trivial, but we will soon use 
this property of PL to demonstrate something more interesting.) 
 
 
 
 
 
Exercise 16 
 
It can happen that two distinct derivations (distinct in the sense that the rules are applied 
in a different order) can nevertheless be derivations of the same sentence.  Give a 
derivation of (d) in exercise 14 that is distinct from the one you gave in answering that 
question. 
 
 
 Here's a bit more about the interpretation of PL.  We don't know much about our 
propositions, but we do know this:  given a situation, each one of them is either true or 
false.  We have only three propositional variables, but suppose that I tell you that in a 
particular situation, p and q are true and r is false.  Given the "pronunciations" of the 
connectives I mentioned earlier, you might then suspect that in that situation, among 

other things, p is false, r is true, (p&q) is true, (qvr) is false, etc.  We want to write 
explicit rules that specify these interpretations. 
 
 Our first rule of interpretation will say of our atomic sentences, i.e. the ones that 
have no internal parts on our analysis so far, that they can be either true or false.  
Adopting a useful piece of terminology, we will say that each of our atomic sentences 
denotes a proposition, and since, given a situation, propositions are either true or false, 
each atomic sentence will denote either The True (T) or The False (F).  (This is actually a 
fairly controversial thing to say, but we set this aside for now.)  These are called "truth 
values".  For example, suppose our atomic sentence p denoted the proposition, which is 
also expressed by, the English sentence "It is snowing outside (here, now)."  To find out 
if whether or not p is true (or, has the value T), one might look out the window.  We don't 
want to fix the interpretation of p once and for all, but we do want to restrict its 
interpretation to truth or falsity, and likewise for the other atomic sentences. 
 
 We'll then write rules of interpretation that will fix the interpretations of all of the 
complex sentences once the interpretation of the atomic constituents is known.  We'll do 
this by linking up each rule in the recursive definition with a rule of interpretation. This 
perhaps sounds a bit more complicated than it is.  I'm confident that after you see the 
rules and work through some examples, all of this will seem easy. 
 
 To emphasize the connection between the rules of the syntax and the 
interpretation, I've reproduced here the rules from above, and added a rule of 
interpretation (marked with an "a", for each). 
 
Rule 1:  p, q, and r are sentences in PL. 
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Rule 1a:  The atomic sentences denote either T or F. 
 
 

Rule 2:  If  is a sentence in PL, so is . 
 

Rule 2a:  If  denotes T, then  denotes F.  If  denotes F, then  denotes T. 
 
 

Rule 3:  If  and  are sentences in PL, so is (&). 
 

Rule 3a:  If  denotes T and  denotes T, then (&) denotes T.  Otherwise (&) 
denotes F. 
 
 

Rule 4:  If  and  are sentences in PL, so is (v). 
 

Rule 4a:  If  denotes F and  denotes F, then (v) denotes F.  Otherwise (v) denotes 
T. 
 
These interpretations correspond rather well with our English readings of these 
connectives.  A true sentence prefixed by "not" becomes a false one, and vice versa.  A 
sentence formed by connecting two true sentences with "and" will be true, and false if 
either part (sometimes called a conjunct) is false.  A sentence formed by connecting two 
false sentences with "or" will be false, and true if either part (sometimes called a disjunct) 
is true.  (This corresponds to the so-called "inclusive" sense of the English "or", on which 
the compound sentence is true in case either or both of the disjuncts is true.)17 
 
Exercise 17 
 
Assuming that p is true, q is false, and r is true, compute the truth values for each of the 
sentences in exercise 14. 
 
 The parentheses play a role in keeping PL unambiguous, where "ambiguity" in 
this context would be an instance in which fixing the interpretation of the atomic 
sentences would fail to fix a unique interpretation of the complex sentence.  They play a 
similar role in arithmetic.  In the absence of often used disambiguating conventions, a 
statement like  
"5 + 3 x 2" would be ambiguous between one reading on which the value is 16, and the 
other on which the value is 11.  We can disambiguate the string by inserting parentheses 
around the operation to be performed first, e.g. "(5 + 3) x 2". 
 
Exercise 18 
 

 
17 The "exclusive" sense of "or" is said to make a compound sentence false when both disjuncts are true.  
It's not completely clear that English has this sense of "or" but you can get a feel for it by pondering the 
standard interpretation of the sentence "You can write a final paper or you can take a final exam." 
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Consider the sequence p&pvq.  There are three ways of inserting parentheses in this 
sequence in order to make it well formed in PL.  What are they? 
 
Exercise 19 
 
Give the derivations that correspond to each of the sentences you gave in your answer to 
exercise 18. 
 
Exercise 20 
 
Would the sequence given in exercise 18 be ambiguous, given the rules of interpretation 
above (and overlooking the parentheses, of course)?  By "ambiguous" here I mean is it 
possible for the string to denote both T and F in a given situation18? Justify your answer.  
 
 

We'll turn now to developing more tools for describing the syntax of languages.  

Before we do that, though, let's again look ahead to glimpse the relevance of what we 
have just seen for the analysis of natural languages.  The example of PL shows us that the 
nature of a derivation can change from system to system. Though every line of a 
derivation in PL has to be justified by a rule and what came before, this justification can 
involve any previous line, rather than just the immediately preceding line as in the MIU 
system. Furthermore, by fixing the interpretation of the "atoms" p, q, and r, we fix the 
interpretation of all sentences recognized by the system. Notice that, even though there 
are infinitely many well-formed sentences in PL, once you find out the truth values of the 
atomic sentences you can determine the truth value of any of the sentences.  This is 
analogous to natural languages like English, in that once you know the rules of the 
language and learn the meanings of the words, you can compute the meaning of any 
sentence.  The situation in natural languages is surely more complicated, since the 
languages are more complex and the relevant sense of the notion of "meaning" is perhaps 
not so clear.  But we can now see to a first approximation how it is possible for people to 
understand sentences they have never heard before.  Once you know the meaning of the 
words, you can use the rules of the language to compute the meaning of any sentence in 
that language.  This is one very strong reason to believe that when people acquire 
languages (and I'm thinking here of first languages) what they acquire is a rule system.  
We will return to this issue at some length later on. 

 
18 When we say a sentence is “ambiguous” we usually mean that it has more than one meaning. But this is 
just about the same thing as saying that the string can be regarded as both true and false in a particular 
situation, depending on what “reading” one focuses on. For example, take the sentence 
 
 Mary didn’t go to Carleton because of the weather in the wintertime. 
 
It’s easy to see that this is ambiguous by considering two possible elaborations: 
 
 reading A: She went to Pomona instead. 
 reading B: She went to Carleton because of its Linguistics Department. 
 
But it’s also easy to imagine a situation where reading A is false and reading B is true, and the citation of 
such a situation would be taken as evidence that the sentence is in fact ambiguous. 
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 Another difference between PL and MIU is that the vocabulary of PL is 
differentiated, in the sense that different parts of the vocabulary play different roles in the 
language. The connectives can be thought of as "bonding agents" for sentences both 
simple and complex, almost like a chemical bond. The parentheses, on the other hand, a 
devices that encode the derivational history of the string, in a way that will become clear 
in the next section. 
 
1.4.2 Trees 
 
 If you think about the results of exercises 18 through 20, and compare these with 
the issue raised in exercise 16, it becomes clear that the order of application of some rules 
in some cases is relevant to the interpretation of the sentence, while the order of 
application in other cases is irrelevant.  What the parentheses do is encode just those 
aspects of the derivational history of the sentence that may make a difference in the 
sentence's interpretation.  Consider, for example, a sentence like 
 

    ((p&q)vr). 
 
Just looking at this, I can see the relative order in which some rules had to be applied to 
derive this sentence, but the relative order of application of other rules is impossible to fix 

with certainty.  For example, I know that rule 2 (the rule adding ) had to apply before 
rule 4 (the rule introducing v), and this has an effect on the interpretation of the sentence.  
On the other hand, I cannot tell whether or not p (or even (p&q)) was introduced before 
r, but this will not make any difference in the sentence's interpretation.  What's crucial, as 
you can probably see after doing the exercises, is the order in which the connectives get 

"inserted".  In the above example, the order has to be &, , v.  
 
 It's convenient to have a notation that will encode just those aspects of the 
derivational history that are potentially relevant to the sentence's interpretation, and 
linguists and philosophers have developed several of these.  Let's use sentence (d) from 
exercise 14 (which is repeated here) as an example in seeing how these notations work. 
 

(14) d.  ((pvq)&(qvr)) 
 
 One kind of representation is called an analysis tree.  The analysis tree for (14d) 
appears in (21): 
 
(21) 
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We borrow some terminology from the arboretum in talking about such (inverted) trees.  
The lines in the tree are called branches and the place where a branch comes together 
with another (or where it ends) is called a node.  In the diagram above, I've placed next to 
each node the number of the rule, which licenses that node.  These numbers are not, 
strictly speaking, a part of the tree.  They are there only to help you check to see whether 
I've followed the rules correctly.  The rules themselves have to be reinterpreted in a 
straightforward way.  We now say that a node is permitted if it follows from the nodes 
below it on the tree by one or another of the rules. 
 
 Analysis trees are constructed "from the bottom up".  If you compare this tree 
with the derivation you gave for this string in exercise 12, you'll see that we've lost a bit 
of information, but the lost information isn't relevant to the interpretation of the sentence.  
For example, we cannot tell from looking at the tree whether the node (pvq) was 

constructed before or after the node (qvr), but this is irrelevant.  What is relevant is 
that, for example, on the right-hand branch rule 4 was applied before rule 2, and this 
information is easily recoverable by looking at the tree.  In a sense, trees correspond to 
blueprints for a construction project, as opposed to step-by-step instructions.  If you're 
building a table, what's relevant is that you have four legs and a top, but the order in 
which you attach the legs to the top isn't relevant.   
 
 You may have noticed that the tree in (21) is redundant.  The information that rule 
4 was applied before rule 2 on the right-hand branch is represented in two places.  It 
appears in the tree itself, and also in array of parentheses in the topmost node.  Now that 
we have analysis trees, we can eliminate the parentheses without introducing any 
ambiguity.  To do this, we'd go back to the rules for PL and take out all the parentheses.  
The tree for (14d) would then look like the one in (22). 
(22) 
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I've taken out the parentheses here, but I've added something else, namely, a possible 
interpretation for the sentence.  I assumed (arbitrarily) that p and q are both true, and r 
false.  There are, of course, other possible interpretations, but once I fix the analysis tree 
and the assignment of truth values to atomic sentences, the truth value of the topmost 
sentence is determined.  Every (sentence, analysis tree) pair will be unambiguous. 
 
 If I take the structure in (22) and erase all but the topmost node, the sentence is 
ambiguous.  Now we can give a first approximation of the notion of structural ambiguity.  
A sentence is structurally ambiguous if it has more than one analysis tree. 
 
Exercise 21 
 

Draw the analysis tree for one "other reading" of pvqqvr. 
 
 
 We don't have all the equipment to describe this fully yet, but this situation is one 
that is frequently encountered in natural languages.  Consider for example the sentence in 
(23). 
 
(23)   Old cars and trucks must be inspected by the police. 
 
If I own a brand new pickup, I might wonder whether or not this directive applies to me.  
The reason for this is that the phrase "old cars and trucks" is structurally ambiguous, 
which is to say that it has both the analysis trees in (24).   
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(24) 

  
 
I've suppressed information here (such as the categories of these items and how the word 
"and" gets into the tree) that we eventually would want to supply, but even so it should be 
easy for you to see how we will explain the structural ambiguity of this phrase.  As you 
might suspect, it's on reading (a) that I have to get my new pickup inspected, while on 
reading (b) it's exempt. 
 
Exercise 22 
 
Give all the analysis trees (without parentheses) that can be associated with the sequence 
in exercise 18. 
 
  
 Pondering the analysis trees, we might notice that there is one piece of 
information about this group of nodes that we could make explicit, namely, that each 
node in the tree is a sentence.  (It's perhaps unclear now why we might want to make this 
explicit, since the way our system is set up, every node in a tree will be a sentence, so 
there is no harm is suppressing this fact in our representations.  However, later on we will 
see that there is often good reason to explicitly represent this sort of categorial 
information.)  A very popular kind of tree that gives a straightforward picture of this "is 
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a" relation is called a phrase structure tree or a phrase marker.  Consider then the phrase 
marker for (14d): 
 
(25) 
 

 
 
The tree in (25) gives all the information that the one in (22) does, plus it explicitly 
represents the fact that substrings like pvq are sentences.  Before we discuss this, let's 
introduce some helpful terminology.  These terms can be defined quite precisely19 but if 
we agree to orient our trees from the topmost S downwards on the page, we can get by 
with the following informal definitions, which will do quite well for our purposes.  Nodes 
and branches are defined as before.   
 
dominance:  If from a node A one can move continuously downward (i.e. never turning 
 upward) to reach a node B, then we say that A dominates B. 
 
immediate dominance:  If a node A dominates a node B, and there is no node C such that 

A dominates C and C dominates B, then we say that A immediately dominates B.   
 
sisterhood:  If two or more nodes A1,...,An are immediately dominated by the same node 

 B, then we say that A1,...,An are sisters. 

 
daughterhood:  If a node A is immediately dominated by a node B, then we say that A is 

the daughter of B. 
 
root:  The root of the tree is the topmost node. 
 
leaf: The leaves of the tree are the bottommost nodes. 
 

 
19For details, see one or another of the mathematical linguistics textbooks such as Wall 1972. 
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There's nothing intrinsically special about these definitions.  They simply make trees 
easier to talk about.  We can (and will) invent other terms to describe relations between 
nodes as we need them.  Here's some practice with these terms. 
 
 
 
 
Exercise 23 
 
For the following tree, list 
 
a. the root 
b. the leaves 
c. the nodes that C dominates 
d. the nodes that C immediately dominates 
e.  the sisters of B 
f. the daughters of B 
g. the sisters of G 
 

   
 
Exercise 24 
 
If a node A is a sister of a node B, is it always the case that any node C that dominates A 
will also dominate B? 
 
 Let’s also agree on something else, which might seem obvious but perhaps is 
worth making explicit: lines linking nodes to nodes never cross. So, representations like 
that below we’ll say are illegal.  
 
 
    A 
 
   B   C 
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D    E  F G H 

 
      I 
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 So, for example, if the mother of a node A precedes the mother of a node B, then 
A precedes B. We should perhaps stress here that we don’t mean to say the crossing lines 
are impossible in some logical sense, only that, for our purposes, we’re going to disallow 
them until we have some evidence that we need them.  
 
 With this terminology in hand, let's return to our phrase marker (25).  The parts of 
the sentence generated appear at the leaves of the tree.  It's easy to see how this phrase 
marker encodes the "is a" relation.  A node together with all of its sisters is a whatever 

the label is on the immediately dominating node.  For example, the sequence , q, v, r is 

an S.  The sequence &,  isn't anything at all.  Here's an important notion:  each node in 
the tree determines a constituent, or, as we might say, a recognizable chunk of stuff.  
More formally, 
 
constituent:  All nodes dominated by some node A taken together form a constituent (of 
 type A).  
 
In the tree of exercise 21, F, G, and H (and everything they dominate) form a constituent 
of type C.  F, G, and I do not form a constituent because there is no node that dominates 
them and only them. (C also dominates H.) 
 
Exercise 25 
 
Recalling the other sentences from exercise 14 (which are repeated here), give phrase 
markers for their "de-parenthesized" versions along the lines of (25). 
 

a. (p&(qvr)) 

b. (qvq) 

c. (r&(q&(p&(r&p)))) 
 

We've seen that trees encode various aspects of a sentence's derivational history, i.e. it 

displays which rules were applied when in the construction of the string, just like 
parentheses do in our original version of PL. We looked at two kinds of trees. Analysis 
trees are constructed "from the bottom up", the node labels themselves are strings in the 
language, and categorial information is usually suppressed. Phrase structure trees, or 
phrase markers, are constructed "from the top down", and node labels usually are 
indications of the category membership of the dominated material. We will mostly deal 
with phrase markers from here on out, but we should be aware of the option of analysis 
trees in case we find they would be useful. Both kinds of trees display the structure of 
strings. A given string might be associated with two or more structures by a given 
grammar, in which case we say that the string is structurally ambiguous. 
 
 
 
1.4.3 Phrase Structure Rules 
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 Though the phrase markers we've been working with accurately display the 
results of applying the rules for PL last given on p. 19, it turns out to be useful to have a 
special format for rules that generate trees.  While our analysis trees followed a 
derivation in a "bottom-up" fashion, phrase structure rules generate trees "top-down".  In 
this method, one starts with the topmost node, and works down towards the smallest parts 
of the structure.  Collections of phrase structure rules are called phrase structure (PS) 
grammars.  Here's a PS grammar for PL: 
 
(26)   A PS Grammar for PL (Version 1) 
 

 1. S ->  S 

 2. S -> S & S 

 3. S -> S v S 
 4. S -> p 
 5. S -> q 
 6. S -> r 
 
(I've numbered the rules for convenience.  They are not to be regarded as ordered in any 
way.)  These rules license the construction of phrase markers in the following way:  By 
convention we begin with the symbol S. 
 
(27)     S 
 
We then find any rule which has an S on the left side of the arrow and apply that rule by 
writing the symbols on the right side of the arrow underneath the S and connect each of 
these symbols to the S with lines.  This is sometimes called "expanding" or "rewriting" a 
node.  For example, if we apply rule 5, we get: 
 
(28)    

     
 
This tree "says" that q is an S (i.e. a sentence).  Since q does not appear on the left side of 
any rule (these symbols are sometimes called terminals), this phrase marker cannot be 
built any further.  We say that it is terminated.  Suppose instead we had chosen rule 2: 
 
(29) 
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Now we can expand the other two S nodes, again by choosing any rule that has an S on 
the left side of the arrow, and continue this until the bottom nodes can no longer be 
expanded by any rule.  The following completion of the tree should be easy to follow: 
 
(30) 

   
 

In our original PL system, this would be the sentence (p&(qvr)).  Both say more or less 
the same thing.  In fact, we could make them exactly equivalent by adding node labels to 
the parentheses.  When linguists do this, its common practice to use square brackets 
instead of parentheses.  So, an alternative representation of the tree in (30) is (31): 
 
 

(31)   [S [S  [S p]] & [S [S q] v [S r ]]] 

 
Which representation one chooses, trees or labeled bracketing, usually depends on what 
will be easiest to read.  In this case, you probably find the tree easier to absorb, but if I 
was keen to emphasize (for some reason) that r in (30) is "three S's down", I might 
choose a labeled bracket notation, and leave irrelevant parts of it out to help you focus on 
this fact better: 
 
(32)   [S ... [S ... [S r ]]] 

 
It's very helpful to get very good at translating from the tree notation to labeled brackets 
and back again. 
 
Exercise 26 

 
Draw three trees generated by the grammar in (26) that you have never seen before. Give 
the equivalent representations in labeled bracketing. 
 
 We've now modified our metalanguage so that we explicitly represent the fact that 

in PL strings like p, r, and q&p are sentences.  Our loyal and hard-working connectives 
might be feeling a bit neglected, so in an egalitarian spirit (and with forthcoming ulterior 
motives up our sleeve), let's assign them to categories as well.  We could of course 
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choose any labels for these categories we like, so we'll choose ones that (like S) 
abbreviate our English names for these categories:  1CON and 2CON. 
 
(33) A PS Grammar for PL (version 2) 
 
S -> 1CON S 
S -> S 2CON S 
 

1CON ->  

2CON -> & 
2CON -> v 
S -> p 

S -> q 
S -> r 
 
Exercise 27 
 
Give trees generated by the grammar in (33) that correspond to those you drew in 
exercise 25. 
 
 
 In the grammar in (33) I've separated the rules into two groups in order to draw 
your attention to a distinction we might make between types of rules in this system.  To 
characterize this distinction, think of how you might describe PL to someone.  You might 
say, "There are three kinds of categories in PL, sentences, one-place connectives, and 
two-place connectives.  As for the architecture of complex sentences, one-place 
connectives precede the sentences they go with, and two-place connectives appear 
between the two sentences they go with."  Pursuing the analogy with natural languages 
we introduced earlier, we might say that there are three kinds of "words" in PL, atomic 
sentences and the two kinds of connectives.  The rules in the second group in (33) serve 
to introduce the "words" into trees.  The two rules in the first group specify the structure 
of the complex sentences.   
 
 The list of words in a language is sometimes called the lexicon, and we can call 
the rules in the second group lexical insertion rules, since they insert lexical items into 
trees.  You might have the intuition that modifications of the lexical insertion rules 
wouldn't change the fundamental structure of the language very much.  For example, 
adding a new atomic sentence with a rule S -> t is rather like an English speaker learning 
a new word.  Technically, of course, this does change the language generated, but the 
new one overlaps with the old so much that we still might regard the two languages as 
being in some basic sense the same.  Changing or adding to the first group of rules, on the 
other hand, would seem to change the language in a more radical fashion. 
 
 We can recognize this distinction while at the same time streamlining our 
grammar of PL by making a third change in the metalanguage.  We separate the rules into 
two components.  The Lexical Component consists of rules, which list the terminal 
symbols and their categories.  It is rather like (and sometimes is called) a dictionary.  The 
Phrase Structure Component  consists of rules that specify the structure of complex 
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sentences.  These rules most often have at least two category (or nonterminal) on the 
right side of the arrow. 
 
 
 
 
 
 
 
 
 
 
 
(34)  A PS Grammar for PL (Version 3) 
 

Phrase Structure Component: 
 
S -> 1CON S 
S -> S 2CON S 
 
Lexical Component: 
 
S: p,q,r 

1CON:  

2CON:  &,v 

 
 
We read the Lexicon as follows:  The symbol to the left of the ":" is the category of each 
of the items to the right.  When constructing a tree, we are allowed to insert any item of 
given category underneath the node of the tree, which matches the category of the given 
item. 
 
 This change in the metalanguage doesn't change PL at all.  It only alters our view 
of how derivations proceed.  They now have two distinguishable parts.  In the first part, 
the PS rules generate a tree such as that in (35). 
 
(35) 
 



Linguistics 115 Text, 39 

   
Then the lexical component inserts appropriate terminal symbols underneath what we 
might call the preterminal nodes of the tree (i.e. those nodes which immediately 
dominate lexical items). 
 
 Our metalanguage now gives us an easy way of distinguishing what are surely 
two very different processes in natural languages.  Learning (or forgetting) a word is now 
characterizable as an addition to (or deletion from) the lexicon.   
 
Exercise 28 
 

Suppose I tell you that  is a two-place connective,  is a one-place connective, and s is 
an atomic sentence in PL.  Which of the following is well formed according to the 
grammar in (34)?  For those that are, give a tree generated by that grammar, assigns a 
structure. 
 

a.  pq&s 

b. psq 

c. p&sr 

d. psr 
 
 
 
1.4.4 The Fable of the Planet of the Propositional Logic Speakers 
 
 To get a picture of the second kind of rule modification in natural languages, let's 
indulge ourselves with a bit of fancy.   
 
 On a planet far far away in another galaxy, there lives a group of creatures that 
speak languages not unlike our old friend PL.  I won't describe their physical appearance 
and you are invited to imagine them how you wish.  On this planet, there are many 
different countries and there are many different languages, with wildly diverging sound 
systems and orthographic conventions.  We'll actually simplify matters somewhat by 
giving sentences in these languages that are to be read from left to right, as in English. 
(Some groups on the planet write their sentences from right to left or top to bottom.) 
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 One group speaks a language called Camestres which happens to be exactly like 
PL, including the additions made in exercise 28.  Camestranians obviously don't talk 
about much, and the extent of their thought processes is an open question.   
 
 Not far from the Camestres speakers lives a group that speaks Bocardo.  The PS 
component for Bocardo is the same as Camestres, but the lexicon looks quite different.  
Here's some translations: 
(36)  Glosses between Camestres and Bocardo: 
 
  Camestres  Bocardo 
 

  p    

  q    

  r    

  s    

      

     © 

      

  v    

      

 
Even though their orthographies are quite different, the pronunciations of the languages 
are identical, and this has tended to intertwine the two economies, with all the usual 
resulting frictions. 
 
Exercise 29 
 
Translate the following sentences into Bocardo. 
 

a. p&qvr 

b. pvq&qvr 

c.  psr 
 
 The relation between Camestres and Bocardo is rather straightforward (and hence 
rather uninteresting).  For example, both languages have ambiguous sentences, which 
both groups regard as a valuable feature of the languages.  But the relation between both 
of these languages on the one hand and Fresison on the other is more intriguing.  Fresison 
has a lexicon and orthography exactly like Camestres, but instead of the rule S -> S 
2CON S, Fresison has S -> 2CON S S.  In other words, instead of the two-place 
connectives appearing between the two sentences they connect, in Fresison all the 
connectives appear before the sentences they apply to. 
 
Exercise 30 
 
Translate the sentences in exercise 29 into Fresison, and give the trees for these 
sentences.  There may not be a unique translation, since as you'll recall, sentences in 
Camestres are sometimes ambiguous.  In Fresison, it turns out, no sentences are 
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ambiguous (the Fresisonians take this as a particular source of pride), and consequently it 
is often the case that a perfectly faithful translation is impossible.  So for this exercise, 
pick one or another of the readings of the ambiguous strings in Camestres for translation, 
and indicate which reading you've chosen by drawing a tree for the Camestranian 
sentence. 
 
  
 Bramantip, like Fresison, has a vocabulary, phonology, and orthography identical 
to Camestres, but it's PS Component looks like this: 
 
The PS Component for Bramantip: 
 
 S -> S 1CON 
 S -> S S 2CON 
 
Exercise 31 
 
Translate the sentence in exercise 29 into Bramantip.  (Bramantip, like Fresison, also has 
no ambiguous sentences, so the same instructions from exercise 27 apply here.  While 
doing this exercise you may see why the Bramantipites think the Fresisonians do 
everything backwards, and vice versa.) 
 
 Felapton is interesting. It is like Fresison in syntax, and it is written like Fresison, 
but its phonology is quite different. (Korean and Japanese have nearly identical structures 
but very different phonologies.) Here’s some pronunciations: 
 
 p: ‘nip’ 
 q: ‘nop’ 
 r: ‘nope’ 

  ‘heep’ 
 &: ‘hoop’ 
 v: ‘hop’ 
 
 
 
 
 
Exercise 32 
 
Translate the following utterance in Felapton into Camestres: 
 
 hoop hop heep nip nop nope 
 
 Were we to venture further, we would encounter apparent limitless diversity, what 
with all the varying orthographies, pronunciations, modifications of vocabulary and 
variations on the PS rules.  But from our point of view, we can see that beneath this rich 
diversity there is a fundamental sameness.  All of these languages are really variations on 
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a single theme.  This is something that the inhabitants of the planet might find worth 
knowing. 
 
Exercise 33 
 
During your exploration of the Planet of the Propositional Logic Speakers, you discover a 
heretofore unknown language. Describe it.  
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