
Syntax, part 1

Michael Flynn
Carleton College
© 2015

This manuscript is intended for use in Linguistics 115 at Carleton College and may not be
copied, quoted, or further distributed without the permission of the author.

If you are not in a Linguistics class at Carleton, you are still free to download and
printout this document. However, you are not permitted to sell it to anyone, nor may you
use it in a course at another college or university without getting my permission to do so.
–Michael Flynn

This section has two primary purposes. The first is to help readers feel comfortable with
taking languages as purely formal systems, i.e. as sets of objects with no "meanings" at
all. What's important about these languages is their form, not how they communicate
anything, since, with an exception to be noted below, they aren't intended to
communicate anything at all. We will see later that regarding natural languages like
English as formal systems seems to lead to surprising and interesting conclusions about
the nature of the human mind. The second goal is to introduce various techniques for
handling formal systems like these, and a vocabulary with which to talk about their
properties. Before too long we will use these tools to analyze human languages. In the
meantime, I urge you to relax and enjoy the puzzles I have prepared for you.

1.1 Preliminaries

 A set is an unordered collections of things.1 Sets can be specified in many ways.
For example, we might represent the set, which consists of the first three letters of the
roman alphabet as in (1).

(1)

ab
c

But this takes up a lot of space, and is expensive to print. A better way, for practical
reasons, is to write down the set's members or elements within curly braces. This is

1We have the Russian mathematician Georg Cantor (1845-1918) to thank for the fascinating field called set
theory. Among its wonders is that one can conclusively prove that, although there are exactly as many odd
integers as there are integers, and just as many integers as there are fractions (i.e. rational numbers), there
are fewer rationals than there are real numbers (i.e. numbers representable by perhaps nonterminating
decimals), in reasonably straightforward senses of "as many ... as " and "fewer". In other words, there are
(at least!) two "sizes" of infinity. For entertaining discussions of this point, among others, see Delong
(1971) and Hofstadter (1979).

Linguistics 115 Text, 2

sometimes called the list notation. One way the set in (1) can be represented using this
method is in (2).

(2) {a,b,c}

 To say that a is an element of the set in (2) we write "a {a,b,c}". If we

were to give the set in (2) a name, say, A, we could write "a A".

 There are other ways the represent the membership of our set A, since the order of
the presentation of the elements is irrelevant to the set's identity. So the set in (3) is just
another way of writing the set in (2).

(3) {b,a,c}

We could also represent it as in (4), though this would be a bit perverse, since once we
say that a is in the set, saying this over again doesn't change anything.

(4) {a,a,b,c}

(The set of colleges in Northfield, Minnesota consists of Carleton and St. Olaf, no matter
how many times I reiterate that Carleton is in this set.) So here's two things to take to
heart. First, the one and only thing relevant to the identity of a set is its membership.2
Second, most, if not all, concrete representations of sets are misleading. Sets are too
abstract to display with perfect fidelity.

 Here's a bold move, laden with consequences we won't be able to explore here:
We say that sets are things. One immediate consequence of this is that sets can be
members of other sets. For example, the set {a, b, {a}} is a set that has three members: a,
b, and the set that contains a. How many members does {{a,b,c}} have? (If you are not
perfectly comfortable in answering "one", stop here and convince yourself.)

 One way to specify sets that is less misleading is to use what is sometimes called
the predicate notation. Here, one uses a predicate, for example, be one of the first three
letters of the roman alphabet, to characterize the set's members. This is written as in (5).

(5) {x | x is one of the first three letters of the roman alphabet}

(5) is read "the set of all x such that x is one of the first three letters..." More generally, if
P stands for any property, {x | x has P} will specify a set.3 In a more technical notation,

2This is sometimes called the Axiom of Extension.
3This is sometimes called the Axiom of Abstraction. One may be jittery about this innocent sounding
principle. For it's pretty easy to think of properties whose corresponding sets seem a bit dubious. Consider,
for example, the set R = {x | x is not a member of itself}. Members of R include perfectly respectable sets
such as the set of books in the Carleton College library (which is not itself a book, of course). The set of
pizzas in Northfield (at 10:00 pm yesterday), the set of students enrolled in Linguistics 110 (now), and the
set of authors of The Sound Pattern of English all enjoy membership in R. However, asking about and
trying to determine whether or not R itself is a member of R leads to a bit of vertigo. Never fear. See any
introduction to set theory for a way out of this pickle.

Linguistics 115 Text, 3

we might write equivalently {x | P(x)} to be read as "the set of all x such that the property
P holds of x". Obviously, when sets get large, one will be inclined to make use of the
predicate notation, and when one wants to specify an infinite set, this notation or
something much like it will be mandatory, given the unfortunate finiteness of life.

 What we might call the alphabet (in a kind of extended technical sense) for the
writing system for the English language is a set of characters consisting of the letters a
through z, the space, and a few punctuation marks.4 A string over this (or any other)
alphabet is an ordered sequence consisting of members of the alphabet. (6) contains six
distinct strings over the alphabet described in this paragraph.5

(6) a. zzzzzzzz
 b. zzzz
 c. dog
 d. god
 e. m
 f.
 g. age often turns fire to placidity

For strings, though not for sets, order and repetitions count in determining the string's
identity. So (6c) is distinct from (6d) (even though {d,o,g} and {g,o,d} are identical), and
(6a) and (6b) are also distinct. (6e,f) raise a sometimes troublesome point that we may as
well get used to now. As we said above, the space is a character in the alphabet we're
currently considering. Even though it is invisible, it is not nothing. (The space, for
example, has an ASCII code6, but nothing, of course, doesn't.) Because of this, it's
impossible to tell the exact identity of our strings in (6). To alleviate this problem, we
might invent special symbols that serve to help us find the borders of our strings. For
example, we might write (6e,f) as in (7a,b).

(7) a. # m#
 b. # #

Notice that # is not in any of the strings we're trying to specify. It is a symbol that we use
to help us identify strings when they are written down, nothing more. It's still a little hard
to see what string we're trying to identify in (7b). To make such identifications easier, we
might invent a symbol (not one from our current alphabet) and use it to mark a space. To
give this maneuver the air of respectability it surely deserves, I'll choose the Greek letter

sigma: . On this easier-to-see version, (6e,f) look like (8a,b).

(8) a. #m#

4I set aside the capital letters, and also the sensible observation that the space might itself be regarded as a
punctuation mark, as might be things like paragraph breaks, and other conventions that indicate a writer's
intent.
5 (5g) is the first sentence in Stephen Jay Gould's essay "A Biological Homage to Mickey Mouse" reprinted
in his (i.e. Gould's) collection The Panda's Thumb (W.W. Norton and Company, 1980).
6 ASCII stands for American Standard Code for Information Exchange. It is a system, which assigns every
letter, number, punctuation mark, and other symbols a special standard number, so that different computers
and different programs can read each other's text. The ASCII code for the space is 32.

Linguistics 115 Text, 4

 b. ##

This is sort of like staining a cell to reveal the mitochondria. It reveals, for example, that
when I typed in the string (6f) I hit the spacebar fourteen times. We'll come back to this
two-level structure for specifying languages a bit later. In the meantime, we'll assume
that boundaries of all strings mentioned coincide with beginning and end of the visible
portions of the string, and will therefore suppress the indication of string boundaries.

 In a general, technical, and a bit misleading sense, we can think of a language as
being a set of strings over some alphabet. (We make no restriction on the size of this set.
Most of the time, it will be infinitely big.) Suppose we select the alphabet A (we might
also call this the vocabulary) to be the set {a,b}.

A = {a,b}

 Now consider the set of all strings over this vocabulary. (The set of all strings
that can be formed by concatenating , i.e., stringing together, elements of some
vocabulary V is sometimes called the free monoid on V (Wall (1972: 166).) It will
consist of strings such as those in (9).

(9) a
 b
 aa
 ab
 ba
 bb
 aaa
 aab

 etc.

Obviously, the free monoid has infinitely many strings in it, since if I give you a string of
length n, you can give me a string of length n+1. However, each string in this set is of
finite length. Notice, then, that one can have languages of infinite size even though each
string in the language is finite.

 A subset B of a set A is a set such that every member of B is a member of A. (Is
every set a subset of itself?) So, for example, if B = {a,b} and A = {a,b,c}, B is a subset

of A, but A is not a subset of B. To express this in symbols, we write: A B and

B A. A set B is a proper subset of a set A (written B A) if B A and
B≠A.

 The empty (or null) set, symbolized ø, is a set that contains nothing. (One could
represent the null set like this: { }. But no one ever does this, except in contexts like the
present one.) However, even though it is empty, it, like the space, is not itself nothing.
The empty set is a perfectly legitimate object. For example ø ≠ {ø}, since the former
contains nothing, but the latter contains something, namely the empty set. The empty set
is a subset of every set. This is a bit counterintuitive, but one way to see it is to look at

Linguistics 115 Text, 5

from a negative point of view. When is a set A not a subset of a set B? Well, A is not a
subset of B when A contains something that isn't in B. Since ø doesn't contain anything
at all, it can't be the case that ø has something that a set B doesn't, no matter what set we
take B to be.

Exercise 1

True or False?

a. {a} = a

b. {ø} {{ø}, ø}

c. {a, b, {c}} {Ø, {a, b, {c}}}

d. {a,b} {a,b}

e. {a,b} {a,b}

f. ø ø

g. ø ø

The purpose of this section has been to introduce the very general notion of a language

as a set of strings. At this point, you should understand this idea and also see how it might
not be unreasonable to regard languages like English or Pashto7 as sets of strings of
words.

1.2 Generating Languages

 Subsets of the free monoid mentioned in (9) will also be languages, since each of
these subsets will also be a set of strings. We can pick out (or, to use a more technical
term, generate) one or another of these subsets by giving a criterion by which to
recognize a member of the subset that we're interested in. For example, consider the
language L1, defined as in (10).

(10) L1: Vocabulary = {a,b}

 Criterion: A string s is in L1 if and only if the first character of s is an a.

 Imagine a device embodying these characteristics inspecting candidate strings and
then reaching a decision, yes or no, to the question of whether or not the candidate is a
member of L1. In this case, the first character must be an a, and each of the other

characters must be either an a or b. If, for convenience, we restrict candidates to
members of the free monoid described in (9), we get the following results.8

(11) a
 *b
 aa
 ab
 *ba

7 Pashto is spoken in Pakistan and Afghanistan
8 Of course, any candidate that isn't in the free monoid in (9) will be rejected.

Linguistics 115 Text, 6

 *bb
 aaa
 aab

 etc.

The prefixed asterisk means that the candidate is not in the target language.

 Let's pause for a moment to ask a more "psychological" kind of question, by
anthropomorphizing a bit. Imagine that we're introduced to a computer, which "speaks" a
particular language, in other words, among other things, the computer will be able to tell,
for any candidate string we propose, whether or not that string is in the machine's
language. Perhaps some readers of this text have experienced this first hand. If you type
an instruction to a computer, which it doesn't recognize, it will usually let you know in no
uncertain terms, as in the following example I created many years ago on a computer
which “spoke” Digital Command Language:

$ sek carls
%DCL-W-IVVERB, unrecognized command verb - check validity and spelling
 \SEK\
$

This example might seem quaint by today’s standards, since most people don’t interact
with machines in this way anymore. But the point here is that the machine contains some
information which specifies the words and syntax of a language it uses to interact with
the outside world, and if you tried to interact with it in any other way, it would tell you
something like ‘what you just said to me was jibberish, try again if you dare’.

If we were interested in the machine's linguistic capacities, we could adopt two
closely related goals. The first is to discover what language the machine recognizes. To
do this, we might propose various strings to the machine and see what happens, carefully
noting which are accepted and which rejected, and then try to write a grammar of the
language, which, to the extent that we get it right, should correspond in some fairly
straightforward way to something that is actually in the machine.9 Notice that it wouldn't
be at all helpful at this juncture to simply go over to the CMC and start taking the
machine apart, looking for the grammar of its language, since, in terms of all the little
gizmos and whatnots inside the machine, we don't have the faintest idea what we're
looking for. Likewise, if I'm interested in your linguistic capacities, it won't help very
much to carefully remove the top of your skull and go rummaging around in the hills and
valleys of your cerebral cortex. I need to know a lot more about what I'm looking for and
how it's likely to be represented in there. In other words, our characterization of the
language will be abstract, in the sense that we will focus on a disembodied system, a
system we want to describe independently of the hardware it happens to be instantiated
in. So one goal is to give an abstract characterization of the language "known" by the
machine.

9 Naturally, in the case of artificial machines and languages, there are people around whom we could
simply ask, a route that, so far as I know, isn't available in the case of human beings and the languages they
speak.

Linguistics 115 Text, 7

 The second goal we may wish to adopt is to specify what a machine has to be like
in order to handle the languages that it does. To adopt this stance is to shift the focus of
the inquiry away from the languages for their own sake and toward the machines, which
acquire and use them. Once we get a reasonable description of the language our machine
speaks, we might ask what other languages it could have spoken had it only had the
appropriate sorts of interactions with its environment. We might discover that languages
fall into classes, and some machines handle some classes easily but that there are other
classes that the machines don't recognize very easily or maybe can't recognize at all. To
focus on this sort of thing would be to use the languages as window into the nature of the
machines. We might say, this kind of machine recognizes such and such kind of
languages very easily, but can’t manage these other sorts of languages. Presumably this
would be so because of how the machines are designed, that is to say the nature of their
structure before we give them any language at all. This maybe won't be such a fascinating
adventure in the case of our computers, but for humans and their languages, well, it's a
different story, as we will see.

 Returning to our example in (11) above, supposing that the computer's language is
infinite, we will only be able to make a reasonable guess at the identity of the language,
but that will be good enough for us. Also, since the computer itself is finite, the
"program" that we propose for its "mental" computations will have to be finite, since, of
course, it is instantiated in the finite computer. Suppose that we typed in the candidates in
(11) and received the responses indicated there, i.e. the computer responds "yes" to
a,"no" to b, "yes" to ab, etc. What we do now is write some kind of a flow chart that
mimics the computer's responses. We'll then take what is sometimes called a "realist"
stance (more on this later), and attribute to the machine the properties of our model.

 Here's one way of representing a model that will do the job in this case. These
systems are sometimes called finite state automata, a notion we will make more precise
in a moment. Consider then an automaton that will generate the language L1 of (11).

(12)

a

a

b
S0 S1

Here's how to interpret this diagram. The circles represent states of the machine.
Concentric circles indicate special states, called final states. The lines and loops, called
arcs, represent instructions on what the machine should do given a particular input. The
machine always starts in an initial state, S0, and contemplates the first (i.e. leftmost)

character of the candidate string. Suppose our machine is looking at the string aba.
Since the first character matches the label on the arc leading away from S0, the machine

"accepts" the a, switches into state S1, and examines the next character in the string,

which in our example is b. This matches the label on one of the loops leading away from
S1. Therefore, the machine follows the loop, accepting the b, returns to S1, and examines

Linguistics 115 Text, 8

the next character in the string, an a. Now the machine follows the other loop, accepting
the a and returning to S1. At this point the machine runs out of candidate string. The rule

in this case is that since the machine is in a final state, the candidate is accepted. The
machine then flashes "yes" on the monitor, and waits for the next candidate.

 Suppose now we type in ba. The machine starts out in S0, and inspects the b. But

there is no arc leading away from S0 labeled with a b. So the machine cannot accept the

b, and will then stop and print "no" on the monitor.

 Let's consider a slightly different automaton, the one in (13).

(13)

a

a

b
S0 S1

b

What language will this automaton accept? First of all, it will obviously accept all the
strings accepted by the automaton in (12), since (13) has all the paths that (12) has, and
more besides. The new path is the loop labeled b on the state S0. (13) will accept the

string ba, since it can loop on the initial b back into S0, switch to the final state S1 on a,

thus stopping in a final state. On the other hand, the machine will reject bbb, since
though the machine will accept the entire string, it won't be in a final state at the end.

 Let's describe finite automata (abbreviated fa) more generally. Fa's have a finite
number of states, linked to each other by a finite number of labeled arcs. The arcs are
instructions telling the machine what to do when it encounters a particular input , e.g.
"accept it and move to state Sn". For the machine to recognize anything, at least one of

the states must be a final state. There are no other restrictions. Fa's can have any (finite)
number of initial and final states, and these can be connected by any (finite) number of
arcs.

 By specifying the fa that generates the language of the computer we were
introduced to a few paragraphs back, we've made a proposal concerning the abstract
characterization of the relevant portion of the machine's "mind".

 We might digress here briefly to anticipate what relevance all of this will have to
our primary objective, which is, as you'll recall, to describe human languages and the
minds that "know" them. We can think of natural languages like English as (among other
things) infinite sets of strings of words. For the moment, think of the words in English as
atomic units. (We'll return later to investigate their internal structure.) So, the, running,
sleeps, baby, computer, have, etc. are all items in the English vocabulary, analogous to
the set {a,b} in our language L1 above. Suppose we took the set of words in any ordinary

Linguistics 115 Text, 9

dictionary, added in a few proper names, formed some strings over this set, and presented
those strings to a person who knows English. We will likely get results like this10:

(14) a. babies sleep in cribs
 b. *sleep babies cribs in
 c. colorless green ideas sleep furiously
 d. *furiously sleep ideas green colorless
 e. do you often walk to school
 f. *walk you often to school
 g. the pen that I lost was expensive
 h. I don't know where my pen is
 i. *the pen that I don't know where is was expensive

j. how Ann Salisbury can claim that Pam Dawber's anger at not receiving her fair
share of acclaim for Mork and Mindy's11 success derives from a fragile ego
escapes me.
k. *how Ann Salisbury can claim that Pam Dawber's anger at not receiving her
fair share of acclaim for Mork and Mindy's success derives from a fragile ego
escape me.

Putting aside for awhile the question of whether or not this point of view is particularly
illuminating, we could regard our English speaker as being rather like the computer we
considered a moment ago, in at least this respect: The person is a finite object, capable of
deciding, for any given string over the English vocabulary, whether or not the candidate
string is in English or not. We might then try to write a description of the mechanism the
person possesses that accounts for this skill. Furthermore, we might find it convenient
(or even necessary) to couch this description in abstract terms, that is, in terms that are
independent of the person's "hardware" (e.g. neural organization and electro-chemical
flows in the brain). In other words, we might end up with a description analogous in
some ways to our theory about the internal organization of the computer. This is one of
the central problems of linguistics theory, and we will have much to say about it later.
For now, though, let's return to our investigation of finite automata.

 (16) is a representation of an fa that will generate the language in (15).

(15) a
 aba
 ababa
 abababa

 etc.

 or more accurately and succinctly, a(ba)n, n ≥ 0.12

10 Examples (14c,d) are very famous examples from Noam Chomsky's first book, Syntactic Structures
(1957). (14j,k) were cited by Lila Gleitman in her paper "Maturational Determinants of Language Growth"
(1981). As Gleitman noted, (14j) originally appeared in a letter to TV Guide.
11 Mork and Mindy was a wacky television sitcom from the late 1970’s and early 1980’s, starring Robin
Williams (and of course Pam Dawber). If you don’t believe me, go to
http://www.sitcomsonline.com/morkandmindy.html

Linguistics 115 Text, 10

(16)

S0 S1

a

b

(17) is an fa that will generate the language abna, n ≥ 0.

(17)

a
S1S0

a

b

S2

(18) generates (ab)n, n ≥ 0.

(18)

Notice that (18) will also recognize the empty string.

Exercise 2

Every fa we've seen so far generates an infinite language. Of course, there are fa's that
recognize finite languages. Give an example of one by modifying any of the fa's we've
seen so far. Try to give a procedure to check, given any fa at all, whether or not that fa
recognizes an infinite language.

Exercise 3

Describe (in English) the language generated by each of the following fa's.

12 The superscript n indicates that the sequence in parentheses, in this case, ba, can be repeated n times.

Linguistics 115 Text, 11

a.

b.

Linguistics 115 Text, 12

Exercise 4

Draw fa's for each of the following languages:

a. aba
n

c n ≥ 0.

b. ac
m

(ba)
n, n,m ≥ 1

Exercise 5

Take words in English to be atomic units, analogous to the letters a and b in the examples
above. (That is to say, suppose words have no internal parts.) Draw a fa that generates
exactly 13the language that consists of the following strings:

 books have pages
 some books have pages
 books have many pages
 this book has pages
 this book has many pages

Exercise 6

Consider a language like the one in Exercise 5, except that sentences such as the
following are in it as well:

 this book has many many pages
 this book has many many many pages
 this book has many many many many pages

Suppose that arcs are costly, say, in terms of memory space in a computer.
(Alternatively, you can imagine that I charge you ten cents for each arc in the fa you
draw.) I give you a choice: You can either draw an fa for

a. the language in which many can be repeated as many as thirty eight times (this
language will have finitely many sentences in it)

or

b. the language in which many can be repeated unboundedly many times (this language
will have infinitely many sentences in it).

Say which language would you choose to draw an fa for, and why.

Exercise 7

13Exactly here means that the language generated consists of all the sentences given, and that the language
contains no other sentences. We say that the fa you draw generates all and only the sentences given.

Linguistics 115 Text, 13

It's easy to draw an fa for the language anbm, n,m ≥ 1. Do it. However, not only is it

difficult, it's flat out impossible to draw an fa for anbn, n ≥ 1 (i.e., where there must be
exactly the same number of a's and b's in each string). Sketch out how you would draw

an fa for anbn for any finite n, and indicate what the problem is when n can get
indefinitely large.

In this section we've seen how one can specify (or recognize or generate) an infinite

language using a finite mechanism. We've also had a glimpse of how one might use the
linguistic capacities of a thing (machine or organism) to approach the question of what
sort of mechanisms has to be inside the thing. A finite state automaton is a particularly
simple representation of a language recognizing capacity, so simple in fact that there are
well defined languages which no fa, no matter how large, can recognize. (Thus a thing
that recognizes one of these languages can't have (merely) an fa inside.)

1.3 The MIU system14

 The MIU system generates a language, in the sense of "language" we have been
using so far. We examine it solely for the purpose of extending our technical apparatus
and conceptual framework. The vocabulary for the MIU system is {M,I,U}. The system
has four rules.

Rule 1: If you have a string whose last letter is I, you can add a U at the end.

 In more abbreviated form: xI => xIU

The x in this abbreviation is a variable. Of course, no string in the MIU system looks
like "xI" since "x" is not even in the vocabulary. The "x" here is to be regarded as a
variable over strings of symbols that are in the vocabulary.

 This is perhaps a good time to introduce the important distinction between an
object language and a metalanguage. If I talk about the mighty Carleton Knights, there's
no danger of confusing the Knights with my talk about them. But if I'm talking about a
language, I should be careful to distinguish the language I'm talking about (the object
language) from the language I'm talking in (the metalanguage, i.e. the language used to
talk about the object language). In this case, the object language is the one generated by
the MIU system. The metalanguage, in the first version of the rule, is English. In the
rule's abbreviation, the metalanguage is a special one that I use to shorten, and thus make
more readable, the English version of the rule. Recall (6e,f) and their representations
(8a,b):

(6) e. m
 f.

(8) a. #m#

14This system was invented by Douglas Hofstadter and you can read about it and very many other
interesting things in his book Gödel, Escher, Bach: An Eternal Golden Braid (Hofstadter 1980).

Linguistics 115 Text, 14

 b. ##

The items "m" and " " (i.e. the space) are in the object language. But "#" and "" are not
in the object language. They are in the metalanguage.

 We will have much to say about metalanguages later on. For now, though, it's
worth observing that it is easy to change the metalanguage dramatically while leaving the
object language alone, just as snow falls in Northfield no matter how we choose to talk
about it. For example, Rule 1 says that if I have a string such as IUMMI, I can form a
new string in the language by adding a U on the end, i.e. IUMMIU. However, if I were
writing for a Dutch speaking audience, most likely I would have chosen a different
metalanguage, namely Dutch. Here's Rule 1 in that language:

Regel 1: Als je een rij hebt met als laatste letter een I, dan kun je een U aan het eind
 toevoegen.

 Afgekort: xI => xIU

This change might seem quite dramatic, but the important point to note is that the object
language doesn't change at all. This rule still adds a U to any string that ends in an I. For
now, we will regard the choice of metalanguage as a matter of convenience, and we will
feel free to modify metalanguages at will, changing them to suit our purposes or
whenever the spirit moves us. Later on, we will see that the choice of a metalanguage for
describing natural languages such as English, Tamil, and Hausa in linguistics is crucial,
and can in fact be thought of one of the central problems for the discipline.

 Let's now return to the MIU system.

Rule 2: Suppose you have Mx. Then you may also form Mxx.

 Abbreviation: Mx => Mxx

This rule will take MIUU into MIUUIUU. It takes everything to the right of the initial
M and adds a copy of that to the right of the original string. One thing to notice here is
that since no variable appears to the left of the M, the M must be the first symbol in the
input string. So this rule will not apply to a string like IMU.

Rule 3: If III occurs anywhere in a string, this substring (i.e. part of a string) may be
 replaced with a U.

 Abbreviation: xIIIy => xUy

Rule 3 will change, for example, MIIIUI into MUUI. Notice here that I have chosen
two distinct variables, x and y, to indicate that there may be substrings on either side of
the three adjacent Is. I don't want to require that these substrings be identical, which I
would imply if I had written xIIIx => xUx. The intention here is that the substring
flanking the target (i.e. the material to be affected by the rule, in this case, III) may be
identical, but they needn't be. So this rule could apply to MUIIIMU, changing it to

Linguistics 115 Text, 15

MUUMU. If I had written the rule with two x's flanking the target, then this is the only
kind of input the rule could apply to. Also it is to be understood that either of the
variables (or both) could be null, that is, there needn't be a substring that the variable is
standing for. For example, Rule 3 will apply to IIIUM, changing it to UUM.

 The last rule is

Rule 4: If two adjacent U's appear in a string, they can both be deleted.

 Abbreviation: xUUy => xy

This rule would take, for example, MUUI into MI.

 Notice that, given a string, there may be more that one way for a rule to apply to
it. To describe this, let's introduce a bit more terminology. Let's call the specification of
possible inputs to a rule, the left side of the arrow in the abbreviations, a structural
description. What a structural description does is pick out a class of objects to which the
rule can apply. This is actually a commonplace concept. For example, some businesses
offer discounts to people who are 65 years of age or older. In our terminology, "being at
least 65 years old" would be the structural description of the rule which results in a
discount, and we can speak of people meeting or failing to meet that description.
Likewise, we can say that MUUI meets the structural description of Rule 4, but MUIU
does not. The right side of the double arrow, the instruction that specifies what to do if
the structural description is met, we can call the structural change.

 In order to determine whether or not a string meets a structural description, we
factor it. This simply means to divide up into its parts, but as in factoring numbers in
arithmetic, there are usually many different ways to do this. Some factorizations may
satisfy a given structural description while others may not. For example, consider the
string MIUUUI. There are many factorizations of this string, some of which are given in
(19) (I put a between factors):

(19) a. M IU U UI
 b. MI UU UI
 c. MIU UUI
 d. M IU UU I

 e. MIU UU I

We say, for example, that analysis (19a) yields four factors M, IU, U and UI. Analysis
(19b) yields three factors, (19c) gives two factors, etc.

 Suppose we read Rule 4 as specifying that in order for the rule to apply, strings
must be factorable into three substrings, the first and last of which can be any string at all
(including the null string) while the middle substring must consist exactly of two Us. On
this reading, analyses (19b and e) will both satisfy the structural description of the rule,
but the others will not. So, technically speaking, our rules apply to strings under an
analysis, not just strings.

Linguistics 115 Text, 16

Exercise 8

Consider the string MUUIUUI. Give all the factorizations that meet the structural
description of Rule 4, and in each case give the result of applying the structural change.
Do the same for the string MUUUI.

 I now repeat the rules of the MIU system here in their abbreviated form:

Rule 1: xI => xIU

Rule 2: Mx => Mxx

Rule 3: xIIIy => xUy

Rule 4: xUUy => xy

Of course, so far this system doesn't generate anything at all, since all of these rules have
the form of if - then statements. You can't apply any of these rules until you have a string
to apply them to. We need a starting point, which we will call the initial string. Here it
is: MI.

 We can think of this system as licensing derivations. A derivation is a
demonstration that a particular string is in fact in the language generated by the system.
The form of a derivation is a sequence of lines, each of which follows from the one above
it by one of the rules, except for the first line, which is always the initial string. We say a
given derivation is a derivation of the last line in the sequence.15 So in the MIU system,
every derivation begins with MI. Then we apply one or another of the rules in order to
produce a new string, to which we can again apply one or another of the rules to produce
another new string, etc. Each string so produced is shown to be generated by the MIU
system.

 Here's some derivations in the MIU system. (To make derivations easy to check,
we'll adopt the convention that we indicate next to a line the rule, which was used to
derive it from the line above.)

(20) a. 1. MI initial string
 2. MIU (1)
 3. MIUIU (2)

 b. 1. MI initial string
 2. MII (2)
 3. MIIII (2)
 4. MIIIIU (1)
 5. MIUU (3)

15 Actually, derivations have different forms in different systems We will examine some variations on this
theme shortly.

Linguistics 115 Text, 17

 c. 1. MI initial string
 2. MII (2)
 3. MIIII (2)
 4. MIIIIIIII (2)
 5. MUIIIII (3)
 6. MUUII (3)
 7. MII (4)

 There are several things to notice. The rules may apply in any order (so long as
their structural descriptions are met, of course). If two or more rules are applicable to a
given string, any of the rules may apply, but they must apply one at a time. It sometimes
may happen that the application of one of the rules may destroy the environment for the
other to apply. This often happens in the description of natural languages, and linguists
call such an order of rules a bleeding order. If a rule applies so as to make it possible for
another rule to apply, we call it, you guessed it, a feeding order. For example, both rules
1 and 3 will apply to MIII, but application of rule 3 will destroy the chance for rule 1 to
apply i.e. rule 3 will bleed rule 1 in this case. Derivation (20c) is a bit perverse, as it
derives MII in seven steps, when it could have been derived in two, as the derivation
itself shows. Perverse or not, however, it is a perfectly fine derivation. It may be
stylistically inept, but it is nevertheless a legitimate demonstration that MII is generated
by the system. This example also shows that there in general is more than one derivation
for each string, so there is no such thing as the correct derivation of a string.

 As one gets good at doing derivations, it is tempting to collapse steps. For
example, for (20b) an experienced MIUer might be inclined to write:

 1. MI initial string
 2. MIIII (2,2) (for two applications of Rule 2)
 3. MIUU (1,3)

 There's nothing really wrong with this short hand, except that such derivations can
be difficult for less experienced players to read. So, in the interest of politeness, we
hereby make such abbreviated derivations illegal. When you are asked to give a
derivation, as in exercise 8, write out every step.

 When doing derivations, it is sometimes helpful to work from both ends. For
example, suppose I am asked to derive MIUIUIUIU. I might not see how to get this
right off, so I might reason as follows. I could derive this string by rule (2) if only I could
derive MIUIU, so my problem now reduces to deriving this string. Thus I have so far:

 MI

 MIUIU
 MIUIUIUIU (2)

Linguistics 115 Text, 18

I see that U's are introduced by rule 3. Thus, I apply rule 3 "backwards" to the current
line twice:

 MI

 MIIIIIIII
 MIUIIII (3)
 MIUIU (3)
 MIUIUIUIU (2)

Now it's clear that I can get to MIIIIIIII by repeated applications of rule 2:

 MI initial string
 MII (2)
 MIIII (2)
 MIIIIIIII (2)
 MIUIIII (3)
 MIUIU (3)
 MIUIUIUIU (2)

Exercise 9

Show that the following strings are generated by the MIU system, by displaying
derivations for them.

 a. MUI
 b. MIIUU
 c. MUUUI

 Suppose that I gave you the string UIM and asked you to decide whether or not
this string is generated by the MIU system. One thing you could do is sit down with a
pad of paper (better make it a big one!) and start doing derivations, hoping that sooner or
later (hopefully sooner) the string will show up and you can triumphantly report "yes".
Nevertheless, I venture to think that no one, at least no one who has done exercise 9

Linguistics 115 Text, 19

would dream of resorting to this tactic, since it's plain that this string will never, ever
show up, no matter how long you sat doing derivation after derivation.

 It's useful to formulate explicitly how we know that UIM will never appear as a
line in a legal derivation. The trick, of course, is to stop working within the system and
instead look at it. In this case, we consider rule 1, and observe that if the input to this
rule has an initial M, the output will as well. Rule 1 is "initial M preserving". Rule 2
requires an initial M as a part of its structural description, and returns a string that
maintains it. So it is "initial M preserving" too. It's easy to see that rules 3 and 4 also
have this property. Since the one and only initial string has an initial M, and all of the
rules are "initial M preserving", it follows that every string generated by the MIU system
will have an initial M. From this general theorem, the fact that UIM is not among the
strings generated by the system follows as a trivial corollary.

 The preceding paragraph must seem like an exposition of the obvious, but in other
cases it is not always so clear whether or not a given string is generable by a given
system. When faced with such a problem, it's often a good strategy to first work within
the system for awhile hoping that you suddenly see how to generate the string. If this
doesn't work, the next thing to try might be to think of a property the string has that you
can show is possessed by no string generable by the system. That would tell you that the
string is not generable. The more complicated systems get, however, the harder it is to
tell whether or not some strings are generable by those systems. In some cases, in fact,
one can show that there is no procedure that will work every time. Further discussion of
this would take us too far afield, but those who are intrigued might begin to investigate
this with one of the math or logic books mentioned in the bibliography.

Exercise 10

Say why MUIM is not generable by the MIU system. (As mentioned above, one way to
do this would be to demonstrate something stronger than you need, and then observe that
the result you want trivially follows from this. For example, one might try to show
something about the number of Ms that can appear in a string.)

Exercise 11

Consider the string MU. If it is generable by the system, give a derivation. If not,
demonstrate this. (This problem may be a bit challenging. It is a rewarding exercise not
to give up on it too easily. Give yourself a good chance to solve the problem. For
discussion of it, see Gödel, Escher, Bach.)

Before going on to more interesting languages and techniques for describing them, let's

pause to summarize some of the points mentioned in this section. We saw how languages
could be thought of as sets of strings, and how we can precisely specify the membership
of infinite languages in a finite way. This is useful, since natural languages like Hebrew
can be thought of as infinite sets of strings of words, while the organisms that "know"
these languages are finite. Finite State Automata are very simple systems for generating
languages. We've also seen how one can generate infinite languages like the MIU system

Linguistics 115 Text, 20

by writing finite sets of rules. We distinguish between the language generated (the object
language) and the language in which the rules are written (the metalanguage). Rules of
the sort we examined have two parts: structural descriptions, which specify the class of
objects to which the rules can apply, and structural changes, which specify what the rule
does. Membership in a language can be demonstrated by a derivation, while
nonmembership is most often demonstrated by constructing an argument from outside of
the system, which is based on the nature of the rules.

 Here's a list of some terminology that may have been unfamiliar to you before
reading this chapter. Be sure you have a pretty clear idea of what each term means before
you proceed.

 set member alphabet (or vocabulary)
 string language (proper) subset
 free monoid generate finite state automata
 variable object language metalanguage
 substring structural description structural change
 strings under an analysis derivation

1.4 The Propositional Calculus

 The languages we have considered up to now have been purely pedagogical
devices. We have examined them for no other reason than to illustrate certain basic skills
in manipulating systems that specify languages. We'll turn now to a language (actually, a
class of languages) that has a more distinguished pedigree, even though our main interest
is still in acquiring skills for building systems for describing the syntax of languages.

 The Propositional Calculus (sometimes also called the Propositional Logic, the
Sentential Calculus (or Logic), or the Theory of Truth Functions) was first discussed at
some length by the Stoic philosophers, who flourished in Greece and nearby regions
around the time of Aristotle (3rd and 2nd century B.C.). Much of this work was lost or
ignored in Europe in the Middle Ages and through the Renaissance, and the system was
reinvented by the German philosopher and mathematician Gottlob Frege in the latter half
of the 19th century. Frege's presentation of the system in his Begriffsschrift (Frege 1879)
is commonly regarded as the beginning of the modern era of the study of logic. (For very
interesting accounts of these events, see Delong 1971 or Prior 1962.)

 We will postpone for now consideration of why this system was regarded as so
interesting, and concentrate instead on manipulating the syntax of it so as to acquire more
tools for the analysis of natural languages. In fact, we will not consider Frege's syntax
for the system at all, as it is rather awkward and doesn't play any role in current day
linguistic analyses. We'll instead explore various deployments which are closely related
to (and sometimes identical with) treatments that appear in many present-day logic
textbooks, most of which descend from the systems as they were presented in Principia
Mathematica, the great three volume work on logic and mathematics written by Alfred
North Whitehead and Bertrand Russell and published between 1910 and 1913.

Linguistics 115 Text, 21

 I mentioned a few pages back that linguists are keenly interested in the
metalanguages that are used to describe object languages (object languages such as
English, Chinese, Hungarian, etc.). Our goal here is to take the comparatively simple
language of the propositional calculus and introduce a number of devices and techniques
that may be helpful in explicating the structure of a wide variety of languages. Later on,
we'll see how some of these devices and techniques can be applied to natural languages.

 Another way in which the propositional calculus differs from the languages we've
considered so far is that it has an intended interpretation. By that I mean that most of the
symbols in the system are really symbols in the sense that they are meant to stand for
something outside the language itself. We will informally introduce aspects of this
interpretation as we go along, primarily because this will suggest why some of the
symbols are named the way they are.

1.4.1 The Syntax of the Propositional Calculus by means of a Recursive Definition

 The vocabulary of the propositional calculus consists of three parts. The first part
is a set of propositional variables or atomic sentences (i.e. sentences which have no
internal parts). These are letters (we will use p, q, and r) that stand for propositions.
Roughly speaking, and setting aside some controversies, a proposition is something that,
given a situation, is either true or false. We might at first be inclined to identify
propositions with sentences in a language such as English. For example, when I am in
my office, we say, "The sentence 'Flynn is in his office' is true", and we say the sentence
is false when I am someplace else. But there is some reason to think that propositions are
more mysterious abstract entities. Sentences can be ambiguous, such as the oft cited
"Visiting relatives can be boring", in which case we might be inclined to say that the
sentence expresses two propositions. Also, two different sentences can express the same
proposition, as in "Matsui hit a home run" and "A home run was hit by Matsui". By
"expressing the same proposition" I mean that we know without having to check that if
one of these sentences is true, the other is as well, and likewise with falsity. Further, it
seems clear that two sentences drawn from different languages can express the same
proposition. Consequently, it appears that there is not a one-to-one correspondence
between the propositions and the sentences in natural languages, and therefore we
hesitate in identifying them.

 Loosely speaking, propositions are the "meanings" of sentences. If a sentence has
two meanings, we say it expresses two propositions. If two sentences express the same
meaning, we say they express the same proposition. For now, we will discreetly slide
interesting questions about the nature of propositions under the rug. Here's all we know
about them: propositions are expressed by sentences, and, given a situation, they are true
or false. So we let our propositional variables stand for propositions. For example, we
might let p stand for the proposition expressed by the sentence "Snow is falling (here,
now)". Sometimes this will be true, sometimes false.

 The second part of the vocabulary for the propositional calculus is the set of
connectives. These apply to sentences to form other sentences. For our purposes, we will

Linguistics 115 Text, 22

use only three of these. (Later on, we will consider other connectives and their relation to

these three.) We will have one one-place connective: . This is the connective for
negation and is read "not". We will also have two two-place connectives: & (read: "and")
which is sometimes called conjunction , and v (read; "or") which is sometimes called
disjunction. The distinction between one-place and two-place connectives will become
clear in a moment.

 The third part of the vocabulary consists of the punctuation marks (and).

 A definition is something that gives instructions (implicitly or explicitly) how to
distinguish the thing being defined from everything else. A recursive definition is one
that sort of "looks back on itself", much as rules in the MIU system could apply to their
own output. The following recursive definition of membership in the language of the
propositional calculus, which we will call PL, has some rules of the if-then variety (Rules
2-4) and a basis rule (Rule 1) which gives us initial strings:

Rule 1: p, q, and r are sentences in PL.

Rule 2: If is a sentence in PL, so is .

Rule 3: If and are sentences in PL, so is (&).

Rule 4: If and are sentences in PL, so is (v).

Rule 5: Nothing is in PL except as specified in Rules 1 through 4.16

This system licenses derivations like the MIU system did. For example:

1. p [1]

2. p line 1, [2]
3. q [1]

4. (p&q) lines 2,3 [3]

5. (pv(p&q)) lines 1,4 [4]

 There are a few differences between the PL system and the MIU system. For one,
the rules for PL sometimes take as input two sentences, and therefore it will in general
not be the case that a particular line in the derivation is licensed by a rule and the
immediately preceding line. This calls for a change in our bookkeeping system. Next to
each line, we now write the numbers of the all the lines, which serve as input and the
number of the relevant rule in square brackets. Otherwise things are very much the same
as before. Rules are unordered and may apply anytime their structural descriptions are
met, except now the structural descriptions are stated in terms of a feature of derivations
that is (as yet) implicit, namely that every legal line in a derivation is a sentence in PL. In

16 We include Rule 5 here just to be explicit that rules 1 through 4 exhaust PL, but from now on we'll take

this clause, which is sometimes called the "restriction" for granted. and are of course variables in the
metalanguage, here ranging over sentences in PL.

Linguistics 115 Text, 23

the above example, lines 1 through 4 is a demonstration that (p&q) is a sentence, and
this fact is exploited by step 5.

 One principle worth mentioning here, even though it may seem completely
obvious, is what I will call The Formality Constraint. This principle says that

OONNEE CCAANN OONNLLYY DDOO WWHHAATT TTHHEE RRUULLEESS SSAAYY..

Obvious as it may seem, this sometimes causes problems, especially in this case for
people who have worked with some version of PL before. For example, some might be
tempted to write line 4 in the above derivation as

 p&q

but this, as President Nixon used to say in another context, would be wrong. Rule 3 says
one must include parentheses, and so, one must. There's a good reason for this feature of
the system (which we'll see a bit later on) but for now, take the Formality Constraint to
heart. One corollary of the Formality Constraint is important to notice. If you want a
system to do something, you need a rule, or at any rate some sort of a licensing
procedure, that permits it. Another way to put this is that every step in a derivation must
be licensed by an explicit statement in the recognizing system.

Exercise 12

One reason the Formality Constraint is important is this: If you are trying to write a
system that will generate a language, if you don't observe the Formality Constraint you
likely won't be able to tell if what you propose really does what you think it does, and this
might set you off on wild goose chases that last hours or even decades. It is therefore
wise to try to keep the Formality Constraint in mind. Write out the Formality Constraint
fifty times. (Don't hand this in.) Have a close personal friend tattoo the Formality
Constraint on the inside of your forearm.

Exercise 13

PL has infinitely many sentences in it. Write out a demonstration of this.

Exercise 14

Give derivations of the following sentences:

a. (p&(qvr))

b. (qvq)

c. (r&(q&(p&(r&p))))

d. ((pvq)&(qvr))

Exercise 15

Linguistics 115 Text, 24

Parentheses, as you may have noticed, are introduced in pairs. For the sentence (c) in
exercise 14, connect with an arc each parenthesis with its "sibling" so that you get a
picture sort of like a set of kitchen bowls. (This may seem trivial, but we will soon use
this property of PL to demonstrate something more interesting.)

Exercise 16

It can happen that two distinct derivations (distinct in the sense that the rules are applied
in a different order) can nevertheless be derivations of the same sentence. Give a
derivation of (d) in exercise 14 that is distinct from the one you gave in answering that
question.

 Here's a bit more about the interpretation of PL. We don't know much about our
propositions, but we do know this: given a situation, each one of them is either true or
false. We have only three propositional variables, but suppose that I tell you that in a
particular situation, p and q are true and r is false. Given the "pronunciations" of the
connectives I mentioned earlier, you might then suspect that in that situation, among

other things, p is false, r is true, (p&q) is true, (qvr) is false, etc. We want to write
explicit rules that specify these interpretations.

 Our first rule of interpretation will say of our atomic sentences, i.e. the ones that
have no internal parts on our analysis so far, that they can be either true or false.
Adopting a useful piece of terminology, we will say that each of our atomic sentences
denotes a proposition, and since, given a situation, propositions are either true or false,
each atomic sentence will denote either The True (T) or The False (F). (This is actually a
fairly controversial thing to say, but we set this aside for now.) These are called "truth
values". For example, suppose our atomic sentence p denoted the proposition, which is
also expressed by, the English sentence "It is snowing outside (here, now)." To find out
if whether or not p is true (or, has the value T), one might look out the window. We don't
want to fix the interpretation of p once and for all, but we do want to restrict its
interpretation to truth or falsity, and likewise for the other atomic sentences.

 We'll then write rules of interpretation that will fix the interpretations of all of the
complex sentences once the interpretation of the atomic constituents is known. We'll do
this by linking up each rule in the recursive definition with a rule of interpretation. This
perhaps sounds a bit more complicated than it is. I'm confident that after you see the
rules and work through some examples, all of this will seem easy.

 To emphasize the connection between the rules of the syntax and the
interpretation, I've reproduced here the rules from above, and added a rule of
interpretation (marked with an "a", for each).

Rule 1: p, q, and r are sentences in PL.

Linguistics 115 Text, 25

Rule 1a: The atomic sentences denote either T or F.

Rule 2: If is a sentence in PL, so is .

Rule 2a: If denotes T, then denotes F. If denotes F, then denotes T.

Rule 3: If and are sentences in PL, so is (&).

Rule 3a: If denotes T and denotes T, then (&) denotes T. Otherwise (&)
denotes F.

Rule 4: If and are sentences in PL, so is (v).

Rule 4a: If denotes F and denotes F, then (v) denotes F. Otherwise (v) denotes
T.

These interpretations correspond rather well with our English readings of these
connectives. A true sentence prefixed by "not" becomes a false one, and vice versa. A
sentence formed by connecting two true sentences with "and" will be true, and false if
either part (sometimes called a conjunct) is false. A sentence formed by connecting two
false sentences with "or" will be false, and true if either part (sometimes called a disjunct)
is true. (This corresponds to the so-called "inclusive" sense of the English "or", on which
the compound sentence is true in case either or both of the disjuncts is true.)17

Exercise 17

Assuming that p is true, q is false, and r is true, compute the truth values for each of the
sentences in exercise 14.

 The parentheses play a role in keeping PL unambiguous, where "ambiguity" in
this context would be an instance in which fixing the interpretation of the atomic
sentences would fail to fix a unique interpretation of the complex sentence. They play a
similar role in arithmetic. In the absence of often used disambiguating conventions, a
statement like
"5 + 3 x 2" would be ambiguous between one reading on which the value is 16, and the
other on which the value is 11. We can disambiguate the string by inserting parentheses
around the operation to be performed first, e.g. "(5 + 3) x 2".

Exercise 18

17 The "exclusive" sense of "or" is said to make a compound sentence false when both disjuncts are true.
It's not completely clear that English has this sense of "or" but you can get a feel for it by pondering the
standard interpretation of the sentence "You can write a final paper or you can take a final exam."

Linguistics 115 Text, 26

Consider the sequence p&pvq. There are three ways of inserting parentheses in this
sequence in order to make it well formed in PL. What are they?

Exercise 19

Give the derivations that correspond to each of the sentences you gave in your answer to
exercise 18.

Exercise 20

Would the sequence given in exercise 18 be ambiguous, given the rules of interpretation
above (and overlooking the parentheses, of course)? By "ambiguous" here I mean is it
possible for the string to denote both T and F in a given situation18? Justify your answer.

We'll turn now to developing more tools for describing the syntax of languages.

Before we do that, though, let's again look ahead to glimpse the relevance of what we
have just seen for the analysis of natural languages. The example of PL shows us that the
nature of a derivation can change from system to system. Though every line of a
derivation in PL has to be justified by a rule and what came before, this justification can
involve any previous line, rather than just the immediately preceding line as in the MIU
system. Furthermore, by fixing the interpretation of the "atoms" p, q, and r, we fix the
interpretation of all sentences recognized by the system. Notice that, even though there
are infinitely many well-formed sentences in PL, once you find out the truth values of the
atomic sentences you can determine the truth value of any of the sentences. This is
analogous to natural languages like English, in that once you know the rules of the
language and learn the meanings of the words, you can compute the meaning of any
sentence. The situation in natural languages is surely more complicated, since the
languages are more complex and the relevant sense of the notion of "meaning" is perhaps
not so clear. But we can now see to a first approximation how it is possible for people to
understand sentences they have never heard before. Once you know the meaning of the
words, you can use the rules of the language to compute the meaning of any sentence in
that language. This is one very strong reason to believe that when people acquire
languages (and I'm thinking here of first languages) what they acquire is a rule system.
We will return to this issue at some length later on.

18 When we say a sentence is “ambiguous” we usually mean that it has more than one meaning. But this is
just about the same thing as saying that the string can be regarded as both true and false in a particular
situation, depending on what “reading” one focuses on. For example, take the sentence

 Mary didn’t go to Carleton because of the weather in the wintertime.

It’s easy to see that this is ambiguous by considering two possible elaborations:

 reading A: She went to Pomona instead.
 reading B: She went to Carleton because of its Linguistics Department.

But it’s also easy to imagine a situation where reading A is false and reading B is true, and the citation of
such a situation would be taken as evidence that the sentence is in fact ambiguous.

Linguistics 115 Text, 27

 Another difference between PL and MIU is that the vocabulary of PL is
differentiated, in the sense that different parts of the vocabulary play different roles in the
language. The connectives can be thought of as "bonding agents" for sentences both
simple and complex, almost like a chemical bond. The parentheses, on the other hand, a
devices that encode the derivational history of the string, in a way that will become clear
in the next section.

1.4.2 Trees

 If you think about the results of exercises 18 through 20, and compare these with
the issue raised in exercise 16, it becomes clear that the order of application of some rules
in some cases is relevant to the interpretation of the sentence, while the order of
application in other cases is irrelevant. What the parentheses do is encode just those
aspects of the derivational history of the sentence that may make a difference in the
sentence's interpretation. Consider, for example, a sentence like

 ((p&q)vr).

Just looking at this, I can see the relative order in which some rules had to be applied to
derive this sentence, but the relative order of application of other rules is impossible to fix

with certainty. For example, I know that rule 2 (the rule adding) had to apply before
rule 4 (the rule introducing v), and this has an effect on the interpretation of the sentence.
On the other hand, I cannot tell whether or not p (or even (p&q)) was introduced before
r, but this will not make any difference in the sentence's interpretation. What's crucial, as
you can probably see after doing the exercises, is the order in which the connectives get

"inserted". In the above example, the order has to be &, , v.

 It's convenient to have a notation that will encode just those aspects of the
derivational history that are potentially relevant to the sentence's interpretation, and
linguists and philosophers have developed several of these. Let's use sentence (d) from
exercise 14 (which is repeated here) as an example in seeing how these notations work.

(14) d. ((pvq)&(qvr))

 One kind of representation is called an analysis tree. The analysis tree for (14d)
appears in (21):

(21)

Linguistics 115 Text, 28

We borrow some terminology from the arboretum in talking about such (inverted) trees.
The lines in the tree are called branches and the place where a branch comes together
with another (or where it ends) is called a node. In the diagram above, I've placed next to
each node the number of the rule, which licenses that node. These numbers are not,
strictly speaking, a part of the tree. They are there only to help you check to see whether
I've followed the rules correctly. The rules themselves have to be reinterpreted in a
straightforward way. We now say that a node is permitted if it follows from the nodes
below it on the tree by one or another of the rules.

 Analysis trees are constructed "from the bottom up". If you compare this tree
with the derivation you gave for this string in exercise 12, you'll see that we've lost a bit
of information, but the lost information isn't relevant to the interpretation of the sentence.
For example, we cannot tell from looking at the tree whether the node (pvq) was

constructed before or after the node (qvr), but this is irrelevant. What is relevant is
that, for example, on the right-hand branch rule 4 was applied before rule 2, and this
information is easily recoverable by looking at the tree. In a sense, trees correspond to
blueprints for a construction project, as opposed to step-by-step instructions. If you're
building a table, what's relevant is that you have four legs and a top, but the order in
which you attach the legs to the top isn't relevant.

 You may have noticed that the tree in (21) is redundant. The information that rule
4 was applied before rule 2 on the right-hand branch is represented in two places. It
appears in the tree itself, and also in array of parentheses in the topmost node. Now that
we have analysis trees, we can eliminate the parentheses without introducing any
ambiguity. To do this, we'd go back to the rules for PL and take out all the parentheses.
The tree for (14d) would then look like the one in (22).
(22)

Linguistics 115 Text, 29

I've taken out the parentheses here, but I've added something else, namely, a possible
interpretation for the sentence. I assumed (arbitrarily) that p and q are both true, and r
false. There are, of course, other possible interpretations, but once I fix the analysis tree
and the assignment of truth values to atomic sentences, the truth value of the topmost
sentence is determined. Every (sentence, analysis tree) pair will be unambiguous.

 If I take the structure in (22) and erase all but the topmost node, the sentence is
ambiguous. Now we can give a first approximation of the notion of structural ambiguity.
A sentence is structurally ambiguous if it has more than one analysis tree.

Exercise 21

Draw the analysis tree for one "other reading" of pvqqvr.

 We don't have all the equipment to describe this fully yet, but this situation is one
that is frequently encountered in natural languages. Consider for example the sentence in
(23).

(23) Old cars and trucks must be inspected by the police.

If I own a brand new pickup, I might wonder whether or not this directive applies to me.
The reason for this is that the phrase "old cars and trucks" is structurally ambiguous,
which is to say that it has both the analysis trees in (24).

Linguistics 115 Text, 30

(24)

I've suppressed information here (such as the categories of these items and how the word
"and" gets into the tree) that we eventually would want to supply, but even so it should be
easy for you to see how we will explain the structural ambiguity of this phrase. As you
might suspect, it's on reading (a) that I have to get my new pickup inspected, while on
reading (b) it's exempt.

Exercise 22

Give all the analysis trees (without parentheses) that can be associated with the sequence
in exercise 18.

 Pondering the analysis trees, we might notice that there is one piece of
information about this group of nodes that we could make explicit, namely, that each
node in the tree is a sentence. (It's perhaps unclear now why we might want to make this
explicit, since the way our system is set up, every node in a tree will be a sentence, so
there is no harm is suppressing this fact in our representations. However, later on we will
see that there is often good reason to explicitly represent this sort of categorial
information.) A very popular kind of tree that gives a straightforward picture of this "is

Linguistics 115 Text, 31

a" relation is called a phrase structure tree or a phrase marker. Consider then the phrase
marker for (14d):

(25)

The tree in (25) gives all the information that the one in (22) does, plus it explicitly
represents the fact that substrings like pvq are sentences. Before we discuss this, let's
introduce some helpful terminology. These terms can be defined quite precisely19 but if
we agree to orient our trees from the topmost S downwards on the page, we can get by
with the following informal definitions, which will do quite well for our purposes. Nodes
and branches are defined as before.

dominance: If from a node A one can move continuously downward (i.e. never turning
 upward) to reach a node B, then we say that A dominates B.

immediate dominance: If a node A dominates a node B, and there is no node C such that

A dominates C and C dominates B, then we say that A immediately dominates B.

sisterhood: If two or more nodes A1,...,An are immediately dominated by the same node

 B, then we say that A1,...,An are sisters.

daughterhood: If a node A is immediately dominated by a node B, then we say that A is

the daughter of B.

root: The root of the tree is the topmost node.

leaf: The leaves of the tree are the bottommost nodes.

19For details, see one or another of the mathematical linguistics textbooks such as Wall 1972.

Linguistics 115 Text, 32

There's nothing intrinsically special about these definitions. They simply make trees
easier to talk about. We can (and will) invent other terms to describe relations between
nodes as we need them. Here's some practice with these terms.

Exercise 23

For the following tree, list

a. the root
b. the leaves
c. the nodes that C dominates
d. the nodes that C immediately dominates
e. the sisters of B
f. the daughters of B
g. the sisters of G

Exercise 24

If a node A is a sister of a node B, is it always the case that any node C that dominates A
will also dominate B?

 Let’s also agree on something else, which might seem obvious but perhaps is
worth making explicit: lines linking nodes to nodes never cross. So, representations like
that below we’ll say are illegal.

 A

 B C

Linguistics 115 Text, 33

D E F G H

 I

Linguistics 115 Text, 34

 So, for example, if the mother of a node A precedes the mother of a node B, then
A precedes B. We should perhaps stress here that we don’t mean to say the crossing lines
are impossible in some logical sense, only that, for our purposes, we’re going to disallow
them until we have some evidence that we need them.

 With this terminology in hand, let's return to our phrase marker (25). The parts of
the sentence generated appear at the leaves of the tree. It's easy to see how this phrase
marker encodes the "is a" relation. A node together with all of its sisters is a whatever

the label is on the immediately dominating node. For example, the sequence , q, v, r is

an S. The sequence &, isn't anything at all. Here's an important notion: each node in
the tree determines a constituent, or, as we might say, a recognizable chunk of stuff.
More formally,

constituent: All nodes dominated by some node A taken together form a constituent (of
 type A).

In the tree of exercise 21, F, G, and H (and everything they dominate) form a constituent
of type C. F, G, and I do not form a constituent because there is no node that dominates
them and only them. (C also dominates H.)

Exercise 25

Recalling the other sentences from exercise 14 (which are repeated here), give phrase
markers for their "de-parenthesized" versions along the lines of (25).

a. (p&(qvr))

b. (qvq)

c. (r&(q&(p&(r&p))))

We've seen that trees encode various aspects of a sentence's derivational history, i.e. it

displays which rules were applied when in the construction of the string, just like
parentheses do in our original version of PL. We looked at two kinds of trees. Analysis
trees are constructed "from the bottom up", the node labels themselves are strings in the
language, and categorial information is usually suppressed. Phrase structure trees, or
phrase markers, are constructed "from the top down", and node labels usually are
indications of the category membership of the dominated material. We will mostly deal
with phrase markers from here on out, but we should be aware of the option of analysis
trees in case we find they would be useful. Both kinds of trees display the structure of
strings. A given string might be associated with two or more structures by a given
grammar, in which case we say that the string is structurally ambiguous.

1.4.3 Phrase Structure Rules

Linguistics 115 Text, 35

 Though the phrase markers we've been working with accurately display the
results of applying the rules for PL last given on p. 19, it turns out to be useful to have a
special format for rules that generate trees. While our analysis trees followed a
derivation in a "bottom-up" fashion, phrase structure rules generate trees "top-down". In
this method, one starts with the topmost node, and works down towards the smallest parts
of the structure. Collections of phrase structure rules are called phrase structure (PS)
grammars. Here's a PS grammar for PL:

(26) A PS Grammar for PL (Version 1)

 1. S -> S

 2. S -> S & S

 3. S -> S v S
 4. S -> p
 5. S -> q
 6. S -> r

(I've numbered the rules for convenience. They are not to be regarded as ordered in any
way.) These rules license the construction of phrase markers in the following way: By
convention we begin with the symbol S.

(27) S

We then find any rule which has an S on the left side of the arrow and apply that rule by
writing the symbols on the right side of the arrow underneath the S and connect each of
these symbols to the S with lines. This is sometimes called "expanding" or "rewriting" a
node. For example, if we apply rule 5, we get:

(28)

This tree "says" that q is an S (i.e. a sentence). Since q does not appear on the left side of
any rule (these symbols are sometimes called terminals), this phrase marker cannot be
built any further. We say that it is terminated. Suppose instead we had chosen rule 2:

(29)

Linguistics 115 Text, 36

Now we can expand the other two S nodes, again by choosing any rule that has an S on
the left side of the arrow, and continue this until the bottom nodes can no longer be
expanded by any rule. The following completion of the tree should be easy to follow:

(30)

In our original PL system, this would be the sentence (p&(qvr)). Both say more or less
the same thing. In fact, we could make them exactly equivalent by adding node labels to
the parentheses. When linguists do this, its common practice to use square brackets
instead of parentheses. So, an alternative representation of the tree in (30) is (31):

(31) [S [S [S p]] & [S [S q] v [S r]]]

Which representation one chooses, trees or labeled bracketing, usually depends on what
will be easiest to read. In this case, you probably find the tree easier to absorb, but if I
was keen to emphasize (for some reason) that r in (30) is "three S's down", I might
choose a labeled bracket notation, and leave irrelevant parts of it out to help you focus on
this fact better:

(32) [S ... [S ... [S r]]]

It's very helpful to get very good at translating from the tree notation to labeled brackets
and back again.

Exercise 26

Draw three trees generated by the grammar in (26) that you have never seen before. Give
the equivalent representations in labeled bracketing.

 We've now modified our metalanguage so that we explicitly represent the fact that

in PL strings like p, r, and q&p are sentences. Our loyal and hard-working connectives
might be feeling a bit neglected, so in an egalitarian spirit (and with forthcoming ulterior
motives up our sleeve), let's assign them to categories as well. We could of course

Linguistics 115 Text, 37

choose any labels for these categories we like, so we'll choose ones that (like S)
abbreviate our English names for these categories: 1CON and 2CON.

(33) A PS Grammar for PL (version 2)

S -> 1CON S
S -> S 2CON S

1CON ->

2CON -> &
2CON -> v
S -> p

S -> q
S -> r

Exercise 27

Give trees generated by the grammar in (33) that correspond to those you drew in
exercise 25.

 In the grammar in (33) I've separated the rules into two groups in order to draw
your attention to a distinction we might make between types of rules in this system. To
characterize this distinction, think of how you might describe PL to someone. You might
say, "There are three kinds of categories in PL, sentences, one-place connectives, and
two-place connectives. As for the architecture of complex sentences, one-place
connectives precede the sentences they go with, and two-place connectives appear
between the two sentences they go with." Pursuing the analogy with natural languages
we introduced earlier, we might say that there are three kinds of "words" in PL, atomic
sentences and the two kinds of connectives. The rules in the second group in (33) serve
to introduce the "words" into trees. The two rules in the first group specify the structure
of the complex sentences.

 The list of words in a language is sometimes called the lexicon, and we can call
the rules in the second group lexical insertion rules, since they insert lexical items into
trees. You might have the intuition that modifications of the lexical insertion rules
wouldn't change the fundamental structure of the language very much. For example,
adding a new atomic sentence with a rule S -> t is rather like an English speaker learning
a new word. Technically, of course, this does change the language generated, but the
new one overlaps with the old so much that we still might regard the two languages as
being in some basic sense the same. Changing or adding to the first group of rules, on the
other hand, would seem to change the language in a more radical fashion.

 We can recognize this distinction while at the same time streamlining our
grammar of PL by making a third change in the metalanguage. We separate the rules into
two components. The Lexical Component consists of rules, which list the terminal
symbols and their categories. It is rather like (and sometimes is called) a dictionary. The
Phrase Structure Component consists of rules that specify the structure of complex

Linguistics 115 Text, 38

sentences. These rules most often have at least two category (or nonterminal) on the
right side of the arrow.

(34) A PS Grammar for PL (Version 3)

Phrase Structure Component:

S -> 1CON S
S -> S 2CON S

Lexical Component:

S: p,q,r

1CON:

2CON: &,v

We read the Lexicon as follows: The symbol to the left of the ":" is the category of each
of the items to the right. When constructing a tree, we are allowed to insert any item of
given category underneath the node of the tree, which matches the category of the given
item.

 This change in the metalanguage doesn't change PL at all. It only alters our view
of how derivations proceed. They now have two distinguishable parts. In the first part,
the PS rules generate a tree such as that in (35).

(35)

Linguistics 115 Text, 39

Then the lexical component inserts appropriate terminal symbols underneath what we
might call the preterminal nodes of the tree (i.e. those nodes which immediately
dominate lexical items).

 Our metalanguage now gives us an easy way of distinguishing what are surely
two very different processes in natural languages. Learning (or forgetting) a word is now
characterizable as an addition to (or deletion from) the lexicon.

Exercise 28

Suppose I tell you that is a two-place connective, is a one-place connective, and s is
an atomic sentence in PL. Which of the following is well formed according to the
grammar in (34)? For those that are, give a tree generated by that grammar, assigns a
structure.

a. pq&s

b. psq

c. p&sr

d. psr

1.4.4 The Fable of the Planet of the Propositional Logic Speakers

 To get a picture of the second kind of rule modification in natural languages, let's
indulge ourselves with a bit of fancy.

 On a planet far far away in another galaxy, there lives a group of creatures that
speak languages not unlike our old friend PL. I won't describe their physical appearance
and you are invited to imagine them how you wish. On this planet, there are many
different countries and there are many different languages, with wildly diverging sound
systems and orthographic conventions. We'll actually simplify matters somewhat by
giving sentences in these languages that are to be read from left to right, as in English.
(Some groups on the planet write their sentences from right to left or top to bottom.)

Linguistics 115 Text, 40

 One group speaks a language called Camestres which happens to be exactly like
PL, including the additions made in exercise 28. Camestranians obviously don't talk
about much, and the extent of their thought processes is an open question.

 Not far from the Camestres speakers lives a group that speaks Bocardo. The PS
component for Bocardo is the same as Camestres, but the lexicon looks quite different.
Here's some translations:
(36) Glosses between Camestres and Bocardo:

 Camestres Bocardo

 p

 q

 r

 s

 ©

 v

Even though their orthographies are quite different, the pronunciations of the languages
are identical, and this has tended to intertwine the two economies, with all the usual
resulting frictions.

Exercise 29

Translate the following sentences into Bocardo.

a. p&qvr

b. pvq&qvr

c. psr

 The relation between Camestres and Bocardo is rather straightforward (and hence
rather uninteresting). For example, both languages have ambiguous sentences, which
both groups regard as a valuable feature of the languages. But the relation between both
of these languages on the one hand and Fresison on the other is more intriguing. Fresison
has a lexicon and orthography exactly like Camestres, but instead of the rule S -> S
2CON S, Fresison has S -> 2CON S S. In other words, instead of the two-place
connectives appearing between the two sentences they connect, in Fresison all the
connectives appear before the sentences they apply to.

Exercise 30

Translate the sentences in exercise 29 into Fresison, and give the trees for these
sentences. There may not be a unique translation, since as you'll recall, sentences in
Camestres are sometimes ambiguous. In Fresison, it turns out, no sentences are

Linguistics 115 Text, 41

ambiguous (the Fresisonians take this as a particular source of pride), and consequently it
is often the case that a perfectly faithful translation is impossible. So for this exercise,
pick one or another of the readings of the ambiguous strings in Camestres for translation,
and indicate which reading you've chosen by drawing a tree for the Camestranian
sentence.

 Bramantip, like Fresison, has a vocabulary, phonology, and orthography identical
to Camestres, but it's PS Component looks like this:

The PS Component for Bramantip:

 S -> S 1CON
 S -> S S 2CON

Exercise 31

Translate the sentence in exercise 29 into Bramantip. (Bramantip, like Fresison, also has
no ambiguous sentences, so the same instructions from exercise 27 apply here. While
doing this exercise you may see why the Bramantipites think the Fresisonians do
everything backwards, and vice versa.)

 Felapton is interesting. It is like Fresison in syntax, and it is written like Fresison,
but its phonology is quite different. (Korean and Japanese have nearly identical structures
but very different phonologies.) Here’s some pronunciations:

 p: ‘nip’
 q: ‘nop’
 r: ‘nope’

 ‘heep’
 &: ‘hoop’
 v: ‘hop’

Exercise 32

Translate the following utterance in Felapton into Camestres:

 hoop hop heep nip nop nope

 Were we to venture further, we would encounter apparent limitless diversity, what
with all the varying orthographies, pronunciations, modifications of vocabulary and
variations on the PS rules. But from our point of view, we can see that beneath this rich
diversity there is a fundamental sameness. All of these languages are really variations on

Linguistics 115 Text, 42

a single theme. This is something that the inhabitants of the planet might find worth
knowing.

Exercise 33

During your exploration of the Planet of the Propositional Logic Speakers, you discover a
heretofore unknown language. Describe it.

Bibliography

Botha, Rudolf P. (1989) Challenging Chomsky. Oxford: Basil Blackwell.

Chomsky, Noam (1957) Syntactic Structures. The Hague: Mouton.

Chomsky, Noam (1959) “A Review of B.F. Skinner’s Verbal Behavior,” Language

35.1.26-58. Reprinted in Jerry A. Fodor and Jerrold J. Katz (eds.) (1964) The
Structure of Language: Readings in the Philosophy of Language. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

Chomsky, Noam (1965) Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chomsky, Noam (1995) The Minimalist Program. Cambridge, MA: MIT Press.

Delong, Howard (1971) A Profile of Mathematical Logic. Reading, Mass.: Addison-

Wesley Publishing Company.

Frazier, Lyn (1978) On Comprehending Sentences: Syntactic Parsing Strategies.

University of Connecticut doctoral dissertation.

Frege, Gottlob (1879) Begriffsschrift. (Chapter 1 appears in English translation in Peter

Geach and Max Black (eds.) Translations from the Philosophical Writings of
Gottlob Frege. Oxford: Basil Blackwell, 1970.)

Gleitman, Lila R. (1981) "Maturational Determinants of Language Growth," Cognition

10: 103-114.

Hofstadter, Douglas R. (1979) Gödel, Escher, Bach: An Eternal Golden Braid. New

York: Vintage Books.

Langacker, Ronald W. (1987) Foundations of Cognitive Grammar, vol. 1: Theoretical

Prerequisites. Stanford: Stanford University Press.

Lewis, Harry R. and Christos H. Papadimitriou (1981) Elements of the Theory of

Computation. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Linguistics 115 Text, 43

Pinker, Steven (1994) The Language Instinct. New York: William Morrow and
Company, Inc.

Prior, A. N. (1962) Formal Logic. Oxford: Oxford University Press.

Skinner, B.F. (1957) Verbal Behavior. New York: Appleton-Century-Crofts, Inc.

Smith, Neil (1989) The Twitter Machine: Reflections on Language. Oxford: Basil

Blackwell.

Wall, Robert (1972) Introduction to Mathematical Linguistics. Englewood Cliffs, New

Jersey: Prentice-Hall, Inc.

Whitehead, Alfred North and Bertrand Russell (1910-1913) Principia Mathematica.

Cambridge: Cambridge University Press.

Linguistics 115 Text, 44

Index

alphabet, 3
analysis tree., 28
arcs, 8
asterisk, 6
atomic sentences, 21
Bocardo, 39
branches, 28
Camestres, 39
Carleton Knights, 13
components, 37
concatenating, 4
constituent, 33
daughterhood, 31
denotes, 24
derivational history, 27
derivations, 16
dominance, 31
elements, 2
empty, 5
fa), 8
factor, 15
final states., 8
finite state automata, 7
formal systems, 1
free monoid on V, 4
Frege, 20
Fresison, 39
generate, 5
identity of a set, 2
immediate dominance:, 31
initial state, 8
initial string, 16
is a, 33
language, 4
leaf:, 31
Lexical Component, 37
lexical insertion rules, 36
lexicon, 36
list notation, 2
members, 2
metalanguage, 13
MIU system, 13
node, 28
null, 5
ø, 5

Linguistics 110 Text, 45

object language, 13
phrase marker, 31
phrase structure (PS) grammars, 34
Phrase Structure Component, 37
phrase structure rules, 34
phrase structure tree, 31
predicate notation, 2
preterminal, 38
Principia Mathematica, 21
proper subset, 5
proposition, 21
Propositional Calculus, 20
propositional variables, 21
recursive definition, 22
root, 31
Russell, 21
set, 1
sisterhood, 31
states, 8
string, 3
strings under an analysis, 16
structural ambiguity, 29
structural change, 15
structural description, 15
subset, 5
substring, 14
terminals, 34
variable, 13
vocabulary, 4
Whitehead, 21

Linguistics 110 Text, 46

