Syntax

Michael Flynn
© 1997

**This manuscript isintended for use in Linguistics 110 and Linguistics 115 at Carleton
College and may not be copied, quoted, or further distributed without the permission of the
author.

Note that this version includes an Index and also summarizing paragraphs marked by 1.
(Thisisthe same version asthat used in Ling 115, Winter Term 1995, and in subsegent
termsin both 110 and 115, but differsfrom all other versions.)

Syntax 1

This section has two primary purposes. Thefirst isto help readers feel comfortable with
taking languages as purely formal systems, i.e. as sets of objects with no "meanings” at all.
What's important about these languages is their form, not how they communicate anything,
since, with an exception to be noted below, they aren't intended to communicate anything at
al. Wewill see later that regarding natural languages like English asformal systems seems
to lead to surprising and interesting conclusions about the nature of the human mind. The
second goal isto introduce various techniques for handling formal systems like these, and a
vocabulary with which to talk about their properties. Before too long we will use these tools
to analyze human languages. In the meantime, | urge you to relax and enjoy the puzzles|
have prepared for you.

1.1 Preliminaries

A setisan unordered collections of things.! Sets can be specified in many ways.
For example, we might represent the set which consists of the first three letters of the roman
alphabet asin (1).

(1)

But thistakes up alot of space, and is expensiveto print. A better way, for practical
reasons, isto write down the set's members or elements within curly braces. Thisis
sometimes called the list notation. One way the set in (1) can be represented using this
method isin (2).

IWe have the Russian mathematician Georg Cantor (1845-1918) to thank for the fascinating field called set
theory. Among its wonders is that one can conclusively prove that, although there are exactly as many odd
integers as there are integers, and just as many integers as there are fractions (i.e. rational numbers), there
are fewer rationals than there are real numbers (i.e. numbers representable by perhaps nonterminating
decimals), in reasonably straightforward senses of "asmany ... as" and "fewer". In other words, there are (at
least!) two "sizes" of infinity. For entertaining discussions of this point, among others, see Delong (1971)
and Hofstadter (1979).

Syntax, section 1, 2

(2 {abg

To say that aisan element of the set in (2) wewrite"a& {ab,c}". If wewereto
givethe set in (2) aname, say, A, we could write"a&€ A",

There are other ways the represent the membership of our set A, since the order of
the presentation of the elementsisirrelevant to the set'sidentity. Sothesetin (3) isjust
another way of writing the set in (2).

(3 {bac}

We could also represent it asin (4), though thiswould be a bit perverse, since once we say
that aisin the set, saying this over again doesn't change anything.

(4) {aabc}

(The set of collegesin Northfield, Minnesota consists of Carleton and St. Olaf, no matter
how many times | reiterate that Carletonisin thisset.) So here'stwo thingsto take to heart.
First, the one and only thing relevant to the identity of a set isits membership.2 Second,
most, if not all, concrete representations of sets are misleading. Sets are too abstract to
display with perfect fiddlity.

Here's abold move, laden with consequences we won't be able to explore here: We
say that sets are things. One immediate consequence of thisis that sets can be members of
other sets. For example, theset {a, b, {a}} isaset that has three members: a, b, and the set
that containsa. How many members does{{ab,c}} have? (If you are not perfectly
comfortable in answering "one", stop here and convince yourself.)

One way to specify setsthat isless mideading isto use what is sometimes called the
predicate notation. Here, one uses a predicate, for example, be one of thefirst three letters
of the roman alphabet, to characterize the set's members. Thisiswritten asin (5).

5) {x | x isone of thefirst three letters of the roman a phabet}

(5) isread "the set of al x such that x isone of thefirst threeletters...” More generdly, if P
stands for any property, {x | x has P} will specify aset.3 Inamore technical notation, we
might write equivaently {x | P(x)} to beread as "the set of all x such that the property P
holds of x". Obvioudy, when sets get large, one will be inclined to make use of the
predicate notation, and when one wants to specify an infinite set, this notation or something
much like it will be mandatory, given the unfortunate finiteness of life.

What we might call the alphabet (in akind of extended technica sense) for the
writing system for the English language is a set of characters consisting of the lettersa

2This is sometimes called the Axiom of Extension.

3This is sometimes called the Axiom of Abstraction. One may be jittery about this innocent sounding
principle. For it's pretty easy to think of properties whose corresponding sets seem a bit dubious. Consider,
for example, the set R = {x | x is not a member of itself}. Members of R include perfectly respectable sets
such as the set of books in the Carleton College library (which is not itself a book, of course). The set of
pizzasin Northfield (at 10:00 pm yesterday), the set of students enrolled in Linguistics 115 (now), and the
set of authors of The Sound Pattern of English all enjoy membership in R. However, asking about and
trying to determine whether or not R itself isa member of R leads to a bit of vertigo. Never fear. See any
introduction to set theory for away out of this pickle.

Syntax, section 1, 3

through z, the space, and afew punctuation marks.# A string over this (or any other)
alphabet is an ordered sequence consisting of members of the alphabet. (6) contains six
distinct strings over the alphabet described in this paragraph.>

(6) a 77777777
b. zzzz
c. dog
d. god
e m
f.
0. age often turnsfire to placidity

For strings, though not for sets, order and repetitions count in determining the string's
identity. So (6c) isdistinct from (6d) (even though {d,0,g} and{g,0,d} areidentical), and
(6a) and (6b) are also distinct. (6e,f) raise a sometimes troublesome point that we may as
well get used to now. Aswe said above, the space is a character in the alphabet we're
currently considering. Even though it isinvisible, it is not nothing. (The space, for example,
has an ASCII code?, but nothing, of course, doesn't.) Because of this, it'simpossible to tell
the exact identity of our stringsin (6). To dleviate this problem, we might invent specia
symbolsthat serve to help us find the borders of our strings. For example, we might write
(6ef) asin (7a,b).

7 a#m
b. # #

Noticethat #isnot in any of the stringswere trying to specify. Itisasymbol that we use
to help usidentify strings when they are written down, nothing more. It's still alittle hard to
see what string we're trying to identify in (7b). To make such identifications easier, we
might invent a symbol (not one from our current a phabet) and use it to mark a space. To
give thismaneuver the air of respectability it surely deserves, I'll choose the Greek letter
sigma: 0. Onthis easier-to-see version, (6ef) look like (8a,b).

(8) a #Hoomi#
b. #oooooooooococooo#

Thisissort of like staining a cell to reveal the mitochondria. It reveals, for example, that
when | typed in the string (6f) | hit the spacebar fourteen times. We'll come back to this
two-leve structure for specifying languages abit later. In the meantime, we'll assume that
boundaries of al strings mentioned coincide with beginning and end of the visible portions
of the string, and will therefore suppress the indication of string boundaries.

In ageneral, technical, and abit mideading sense, we can think of alanguage as
being a set of strings over some aphabet. (We make no restriction on the size of this set.
Most of thetime, it will beinfinitely big.) Suppose we select the alphabet A (we might aso
call thisthe vocabulary) to bethe set { a,b} .

4| set aside the capital letters, and also the sensible observation that the space might itself be regarded as a
punctuation mark, as might be things like paragraph breaks, and other conventions that indicate a writer's
intent.

5 (5g) isthe first sentence in Stephen Jay Gould's essay "A Biological Homage to Mickey Mouse" reprinted
in his (i.e. Gould's) collection The Panda's Thumb (W.W. Norton and Company, 1980).

6 ASCII stands for American Sandard Code for Information Exchange. It is a system which assigns
every letter, number, punctuation mark, and other symbols a specia standard number, so that different
computers and different programs can read each other'stext. The ASCII code for the spaceis 32.

Syntax, section 1, 4

A ={ab}

Now consider the set of all strings over thisvocabulary. (The set of al strings that
can be formed by concatenating , i.e., stringing together, elements of some vocabulary V is
sometimes called the free monoid on V (Wall (1972: 166).) It will consist of strings such
asthosein (9).

(9)

BETEBBOP

@
o

Obvioudy, the free monoid has infinitely many stringsin it, sinceif | give you a string of
length n, you can give me a string of length n+1. However, each string in this set is of finite
length. Notice, then, that one can have languages of infinite size even though each string in
the language isfinite.

A subset B of aset A isaset such that every member of B isamember of A. (Is
every set asubset of itself?) So, for example, if B ={ab} and A ={ab,c}, B isa subset of
A, but A isnot asubset of B. To expressthisin symbols, wewritee AZ BandBC A. A
set B isaproper subset of aset A (written B C A) if B C A and B=A.

The empty (or null) set, symbolized g, is a set that contains nothing. (One could
represent the null set likethis: { }. But no one ever does this, except in contexts like the
present one.) However, even though it isempty, it isnot itself nothing. The empty setisa
perfectly legitimate object. For example @= { @}, sSince the former contains nothing, but the
latter contains something, namely the empty set. The empty set is asubset of every set.
Thisisabit counterintuitive, but one way to seeit isto look at from a negative point of view.
Whenisaset A not asubset of aset B? Well, A isnot asubset of B when A contains
something that isn't in B. Since @ doesn't contain anything at all, it can't be the case that @
has something that a set B doesn't, no matter what set we take B to be.

Syntax, section 1, 5

Exercise 1
True or False?

{af =a

{at C{{a}, g}

{a b {c}} €{0F {ab{c}}}
{ab} €{ab}

{ab} C{ab}

9EQD

2C o

QPN o

[0 The purpose of this section has been to introduce the very general notion of alanguage
asaset of strings. At this point, you should understand this idea and aso see how it might
not be unreasonable to regard languages like English or Pashto’ as sets of strings of words.

1.2 Generating L anguages

Subsets of the free monoid mentioned in (9) will aso be languages, since each of
these subsets will also be sets of strings. We can pick out (or, to use amore technical term,
generate) one or another of these subsets by giving a criterion by which to recognize a
member of the subset that we're interested in. For example, consider the language L 1,
defined asin (10).

(10) Li: Vocabulary ={ab}
Criterion: A string sisin Ly if and only if the first character of s isan a.

Imagine a device embodying these characteristics inspecting candidate strings and
then reaching a decision, yes or no, to the question of whether or not the candidate isa
member of L 1. Inthiscase, thefirst character must be an a, and each of the other characters
must be either ana or b. If, for convenience, we restrict candidates to members of the free
monoid described in (9), we get the following results.8

1) a
*b

aa
ab
*ba
*bb
aaa
aab

€tc.
The prefixed asterisk means that the candidate is not in the target language.
Let's pause for amoment to ask amore "psychological™ kind of question, by

anthropomorphizing abit. Imagine that we're introduced to a computer, which "speaks' a
particular language, in other words, among other things, the computer will be ableto tell, for

7 Pashto is spoken in Pakistan and Afganistan
8 Of course, any candidate that isn't in the free monoid in (9) will be rejected.

Syntax, section 1, 6

any candidate string we propose, whether or not that string isin the machine's language.
Most readers of this text have experienced thisfirst hand. If you type an instruction to a
computer which it doesn't recognize, it will usually let you know in no uncertain terms, asin
the following example | created on the VAX, which speaks Digital Command Language:

$ sek carls

%DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\SEK\

$

If we were interested in the machine's linguistic capacities, we could adopt two closely
related goals. Thefirst isto discover what language the machine recognizes. To do this, we
might propose various strings to the machine and see what happens, carefully noting which
are accepted and which rejected, and then try to write agrammar of the language, which, to
the extent that we get it right, should correspond in some fairly straightforward way to
something that is actualy in the machine.® Notice that it wouldn't be at all helpful at this
juncture to simply go over to The Center for Mathematics and Computing and start taking
the machine apart, looking for the grammar of itslanguage, since, interms of dl thelittle
gizmos and whatnots inside the machine, we don't have the faintest idea what we're looking
for. Likewise, if I'minterested in your linguistic capacities, it won't help very much to
carefully remove the top of your skull and go rummaging around in the moist folds of your
cerebral cortex. | need to know alot more about what 1'm looking for and how it'slikely to
be represented in there. In other words, our characterization of the language will be abstract,
in the sense that we will focus on a disembodied system, a system we want to describe
independently of the hardware it happens to be instantiated in. So one goal isto give an
abstract characterization of the language "known" by the machine.

The second goa we may wish to adopt is to specify what a machine hasto be likein
order to handle the languages that it does. To adopt this stance is to shift the focus of the
inquiry away from the languages for their own sake and toward the machines which acquire
and use them. Once we get a reasonabl e description of the language our machine speaks, we
might ask what other languages it could have spoken had it only had the appropriate sorts of
interactions with its environment. We might discover that languagesfall into classes, and
some machines handle some classes easily but that there are other classes which the
machines don't recognize very easily or maybe can't recognize at all. To focus on this sort of
thing would be to use the languages as window into the nature of the machines. Thiswon't
be such afascinating adventure in the case of our computers, but for humans and their
languages, well, it's a different story, aswe will see.

Returning to our examplein (11) above, supposing that the computer's languageis
infinite, we will only be able to make areasonable guess at the identity of the language, but
that will be good enough for us. Also, since the computer itself isfinite, the "program” that
we propose for it's "mental” computations will have to befinite, since, of course, itis
instantiated in the finite computer. Suppose that we typed in the candidatesin (11) and
received the responses indicated there, i.e. the computer responds "yes' to a,"no" to b,
"yes' to ab, etc. What we do now iswrite some kind of aflow chart that mimicsthe
computer's responses. We'l then take what is sometimes called a"realist”" stance (more on
thislater), and attribute to the machine the properties of our mode.

9 Naturally, in the case of artificial machines and languages, there are people around whom we could simply
ask, aroute that, so far as| know, isn't available in the case of human beings and the languages they speak.

Syntax, section 1, 7

Here's one way of representing amodel that will do thejob inthiscase. These
systems are sometimes called finite state automata, a notion we will make more precisein a
moment. Consider then an automaton that will generate the language L 1 of (11).

OO

Here's how to interpret this diagram. The circles represent states of the machine.
Concentric circlesindicate special states, called final states. The lines and loops, called arcs,
represent instructions on what the machine should do given aparticular input. The machine
aways startsin an initial state, S, and contemplatesthe first (i.e. leftmost) character of the
candidate string. Suppose our machine islooking at the string aba. Since the first
character matches the label on the arc leading away from S, the machine "accepts' thea,
switchesinto state S1, and examines the next character in the string, which in our exampleis
b. This matchesthe label on one of the loops leading away from S;. Therefore, the
machine follows the loop, accepting the b, returnsto S1, and examines the next character in
the string, an a. Now the machine follows the other loop, accepting the a and returning to
S;. At this point the machine runs out of candidate string. Therulein this caseisthat since
the machineisin afina state, the candidate is accepted. The machine then flashes "yes' on
the monitor, and waits for the next candidate.

(12)

Suppose now wetypein ba. The machine starts out in Sg, and inspectsthe b. But
thereis no arc leading away from & labeled with ab. So the machine cannot accept the b,
and will then stop and print "no" on the monitor.

Let's consider adlightly different automaton, the onein (13).

(13)

What language will this automaton accept? First of all, it will obvioudly accept al the
strings accepted by the automaton in (12), since (13) has dl the paths that (12) has, and
more besides. The new path isthe loop labeled b on the state Sg. (13) will accept the string
ba, sinceit can loop on theinitial b back into Sy, switch to the fina state $; on a, thus
stopping in afinal state. On the other hand, the machine will regject bbb, since though the
machine will accept the entire string, it won't bein afina state at the end.

L et's describe finite automata (abbreviated fa) more generdly. Fashave afinite
number of states, linked to each other by afinite number of labeled arcs. Thearcsare
instructions telling the machine what to do when it encounters aparticular input , e.g.
"accept it and moveto state Sy". For the machine to recognize anything, at least one of the
states must be afinal state. There are no other restrictions. Fa's can have any (finite)
number of initial and final states, and these can be connected by any (finite) number of arcs.

Syntax, section 1, 8

By specifying the fathat generates the language of the computer we were introduced
to afew paragraphs back, we've made a proposal concerning the abstract characterization of
the relevant portion of the maching's "mind"”.

We might digress here briefly to anticipate what relevance dl of thiswill have to our
primary objective, which s, asyou'll recal, to describe human languages and the minds that
"know" them. We can think of natural languages like English as (among other things)
infinite sets of strings of words. For the moment, think of the wordsin English as atomic
units. (Well return later to investigate their internal structure.) So, the, running, sleeps,
baby, computer, have, etc. are all itemsin the English vocabulary, analogous to the set { a,b}
inour language L 1 above. Suppose we took the set of words in any ordinary dictionary,
added in afew proper names, formed some strings over this set, and presented those strings
to a person who knows English. Wewill likely get results like this'o:

(14 babies deepin cribs
*deep babies cribsin
. colorless green ideas seep furiously
. *furiously sleep ideas green colorless
. do you often walk to school
*walk you often to school
. the pen which | lost was expensive
h. I don't know where my penis
i. *the penwhich | don't know where iswas expensive
j. how Ann Salisbury can claim that Pam Lauder's anger at not receiving her fair
share of acclaim for Mork and Mindy's success derives from afragile ego
me.
k. *how Ann Salisbury can claim that Pam Lauder's anger at not receiving her fair
share of acclaim for Mork and Mindy's success derives from afragile ego

escape me.

Putting aside for awhile the question of whether or not this point of view is particularly
illuminating, we could regard our English speaker as being rather like the computer we
considered amoment ago, in at least thisrespect: The person is afinite object, capable of
deciding, for any given string over the English vocabulary, whether or not the candidate
string isin English or not. We might then try to write a description of the mechanism the
person possesses that accounts for this skill. Furthermore, we might find it convenient (or
even necessary) to couch this description in abstract terms, that is, in termsthat are
independent of the person's "hardware" (e.g. neural organization and el ectro-chemical flows
in the cerebral cortex). In other words, we might end up with a description analogousin
some ways to our theory about the internal organization of the computer. Thisis one of the
central problems of linguistics theory, and we will have much to say about it later. For now,
though, let's return to our investigation of finite automata.

QOO0 Tw

(16) isarepresentation of an fathat will generate the language in (15).
(15 a

aba

ababa

abababa

10 Examples (14c,d) are very famous examples from Noam Chomsky's first book, Syntactic Structures
(1957). (14j,k) were cited by Lila Gleitman in her paper "Maturational Determinants of Language Growth"
(1981). As Gleitman noted, (14) originally appeared in a letter to TV Guide.

€tc.

or more accurately and succinctly, a(ba)", n= 0.11

(16)
a

(=) &

b

(17) isan fathat will generate the language abMa, n = 0.

a a @

(17)

(18) generates (ab)", n= 0.

oo

Notice that (18) will aso recognize the empty string.

(18)

Syntax, section 1, 9

11 The superscript n indicates that the sequence in parentheses, in this case, ba, can be repeated n times.

Syntax, section 1, 10

Exercise 2

Every faweve seen so far generates an infinite language. Of course, there are fa's that
recognize finite languages. Give an example of one by modifying any of the faswe've seen
sofar. Try to give a procedure to check, given any faat al, whether or not that fa recognizes
an infinite language.

Exercise 3

Describe the language generated by each of the following fas.

a

Exercise4

Draw fasfor each of the following languages:
a aba", n=0.

b. a(ba)", n= 1.

Syntax, section 1, 11

Exercise5

Take words in English to be atomic units, analogous to the letters a and b in the examples
above. (That isto say, suppose words have no internal parts.) Draw an fathat generates
exactly 1?the language that consists of the following strings:

books have pages

some books have pages
books have many pages
this book has pages

this book has many pages

Exercise 6

Consider alanguage like the one in Exercise 5, except that sentences such as the following
areinitaswell:

this book has many many pages
this book has many many many pages
this book has many many many many pages

Suppose that arcs are costly, say, in terms of memory space in acomputer. (Alternatively,
you can imagine that | charge you ten cents for each arcin the fayou draw.) | giveyou a
choice: You can either draw an fafor

a. the language in which many can be repeated as many as thirty eight times (this language
will have finitely many sentencesin it)

or

b. the language in which many can be repeated unboundedly many times (this language will
have infinitely many sentencesin it).

Say which language would you choose to draw an fafor, and why.

Exercise 7

It's easy to draw an fafor the language a"b™, n,m = 1. Do it. However, not only isit

difficult, it'sflat out impossible to draw an fafor a"b", n = 1 (i.e., where there must be
exactly the same number of asand b'sin each string. Sketch out how you would draw an

fafor ab" for any finite n, and indicate what the problem iswhen n can get indefinitely
large.

[Inthis section we've seen how one can specify (or recognize or generate) an infinite
language using a finite mechanism. We've aso had a glimpse of how one might use the
linguistic capacities of athing (machine or organism) to approach the question of what sort
of mechanisms hasto be inside the thing. A finite state automaton is a particularly smple
representation of alanguage recognizing capacity, so smplein fact that there are well

12Exactly here means that the language generated consists of all the sentences given, and that the language
contains no other sentences. We say that the fayou draw generates all and only the sentences given.

Syntax, section 1, 12

defined languages which no fa, no matter how large, can recognize. (Thus athing that
recognizes one of these languages can't have (merely) an fainside.)

1.3 The MIU system?3

The MIU system generates alanguage, in the sense of "language” we have been
using so far. We examine solely for the purpose of extending our technical apparatus and
conceptua framework. The vocabulary for the MIU system is{M,|,U}. The system has
four rules.

Rule 1. If you have astring whose last letter is |, you can add aU at the end.
In more abbreviated form: xI =>xIU

Thex in thisabbreviation isavariable. Of course, no string in the MIU system looks like
"xI" since"X" is not even in the vocabulary. The"x" hereisto be regarded asavariable
over strings of symbols that are in the vocabulary.

Thisis perhaps a good time to introduce the important distinction between an object
language and ametalanguage. If | talk about the mighty Carleton Knights, there's no
danger of confusing the Knights with my talk about them. But if I'm talking about a
language, | should be careful to distinguish the language I'm talking about (the object
language) from the language I'm talking in (the metalanguage, i.e. the language used to talk
about the object language). In this case, the object language is the one generated by the
MIU system. The metalanguage, in the first version of therule, isEnglish. Intherule's
abbreviation, the metalanguage is a specia onethe | use to shorten, and thus make more
readable, the English version of therule. Recall (6e,f) and their representations (8a,b):

(6) e m
f.

(8 a #oom#
b. #ooo00O0O0CCOOOOOH

Theitems"m" and" " (i.e. the space) are in the object language. But "#" and "c" arenot in
the object language. They are in the metalanguage.

We will have much to say about metalanguages later on. For now, though, it's worth
observing that it is easy to change the metalanguage dramatically while leaving the object
language alone, just as snow falsin Northfield no matter how we choose to talk about it.
For example, Rule 1 saysthat if | have astring such aslUMMI, | can form anew string in
the language by adding aU on theend, i.e. IUMMIU. However, if | werewriting for a
Dutch speaking audience, most likely | would have chosen a different metalanguage, namely
Dutch. Here'sRule 1 in that language:

Regd 1: Alsjeeenrij hebt met alslaatste letter een |, dan kun je een U aan het eind
toevoegen.

Afgekort: xI =>xIU

13This system was invented by Douglas Hofstadter and you can read about it and very many other
interesting things in his book Godel, Escher, Bach: An Eternal Golden Braid (Hofstadter 1980).

Syntax, section 1, 13

This change might seem quite dramatic, but the important point to note is that the object
language doesn't change at all. Thisrule still addsa U to any string that endsinan|. For
now, we will regard the choice of metalanguage as a matter of convenience, and we will feel
free to modify metalanguages at will, changing them to suit our purposes or whenever the
spirit moves us. Later on, we will see that the choice of ametalanguage for describing
natural languages such as English, Tamil, and Hausaiin linguisticsis crucia, and can in fact
be thought of one of the central problemsfor the discipline.

Let's now return to the MIU system.
Rule 2: Suppose you have Mx. Then you may also form Mxx.
Abbreviation: Mx =>Mxx

Thisrule will take MTUU into MIUUIUU. It takes everything to the right of theinitial M
and adds a copy of that to the right of the original string. One thing to notice hereisthat
since no variable appearsto the | eft of the M, the M must be the first symbol in the input
string. So this rule will not apply to astring like IMU.

Rule 3: If 111 occurs anywherein astring, this substring (i.e. part of a string) may be
replaced with a U.

Abbreviation: xIlly =>xUy

Rule 3 will change, for example, MI11UI into MUUI. Notice herethat | have chosen two
distinct variables, x and y, to indicate that there may be substrings on either side of the three
adjacent Is. | don't want to require that these substrings be identical, which I would imply if
| had written xI11x => xUx. The intention hereisthat the substring flanking the target (i.e.
the material to be affected by therule, inthiscase, |11) may be identical, but they needn't be.
So thisrule could apply to MUITIMU, changing it to MUUMU. If | had written the rule
with two x's flanking the target, then thisisthe only kind of input the rule could apply to.
Alsoitisto be understood that either of the variables (or both) could be null, that is, there
needn't be a substring that the variable is standing for. For example, Rule 3 will apply to
[1TUM, changing it to UUM.

Thelast ruleis

Rule4: If two adjacent U's appear in a string, they can both be deleted.
Abbreviation: xUUy => xy

Thisrule would take, for example, MUUI into M1.

Notice that, given astring, there may be more that one way for aruleto apply to it.
To describerthis, let'sintroduce abit more terminology. Let's call the specification of
possible inputsto arule, the left side of the arrow in the abbreviations, a structural
description. What a structural description doesis pick out a class of objects to which the
rule can apply. Thisisactually acommonplace concept. For example, some businesses
offer discounts to people who are 65 years of age or older. In our terminology, "being at
least 65 years old" would be the structural description of the rule which resultsin a
discount, and we can speak of people meeting or failing to meet that description. Likewise,
we can say that MUUI meets the structural description of Rule 4, but MUIU doesnot. The
right side of the double arrow, the instruction that specifieswhat to do if the structura
description is met, we can cal the structural change.

Syntax, section 1, 14

In order to determine whether or not a string meets a structural description, we
factor it. Thissmply meansto divide up into its parts, but as in factoring numbersin
arithmetic, there are usually many different waysto do this. Some factorizations may
satisfy agiven structural description while others may not. For example, consider the string
MIUUUI. There are many factorizations of this string, some of which are givenin (19) (I
put a | between factors):

(199 aM]|[IUJU|UI
b.MI |UU | UI
c. MIU | UUI
d.M|IUJUUJI
e MIU|UU]I

We say, for example, that analysis (194) yields four factorsM, 1U, U and Ul. Analysis
(19Db) yidlds three factors, (19c) gives two factors, etc.

Suppose we read Rule 4 as specifying that in order for the rule to apply, strings
must be factorable into three substrings, the first and last of which can be any string at all
(including the null string) while the middle substring must consist exactly of two Us. On
this reading, analyses (19b and €) will both satisfy the structural description of the rule, but
the otherswill not. So, technically speaking, our rules apply to strings under an analysis,
not just strings.

Exercise 8

Consider the string MUUIUUI. Give dl the factorizations that meet the structural
description of Rule 4, and in each case give the result of applying the structural change.

| now repeat the rules of the MIU system here in their abbreviated form:
Rulel: xI =>xIU
Rule2: Mx => Mxx
Rule 3: xIlly =>xUy
Rule 4: xUUy => xy

Of course, so far this system doesn't generate anything at all, since al of these rules have the
form of if - then statements. Y ou can't apply any of these rules until you have astring to
apply them to. We need a starting point, which we will call theinitia string. Hereitis: MI.

We can think of this system aslicensing derivations. A derivationisa
demonstration that a particular string isin fact in the language generated by the system. The
form of aderivation is a sequence of lines, each of which follows from the one above it by
one of therules, except for thefirst line, which is always theinitial string. We say agiven
derivationis aderivation of the last line in the sequence.’* So in the MIU system, every
derivation beginswith M1. Then we apply one or another of the rulesin order to produce a

14 Actually, derivations have different formsin different systems We will examine some variations on this
theme shortly.

Syntax, section 1, 15

new string, to which we can again apply one or another of the rules to produce another new
string, etc. Each string so produced is shown to be generated by the MIU system.

Here's some derivationsin the MU system. (To make derivations easy to check,
well adopt the convention that we indicate next to aline the rule which was used to derive it
from the line above.)

(200 a 1. Ml initia string
2.MIU (1)
3.MIUIU 2

b. 1. Ml initia string
2.Mll (2
3. Ml 2
4. MIIU (1)
5.MIUU (3)

C. 1. Ml initia string
2.Mll (2
3. Ml 2
4. ML (2)
5.Multlir — (3)
6. MUUII (3)
7.Mll (4)

There are several thingsto notice. The rules may apply in any order (so long as
their structural descriptions are met, of course). If two or morerules are applicableto a
given string, any of the rules may apply, but they must apply one at atime. It sometimes
may happen that the application of one of the rules may destroy the environment for the
other to apply. For example, both rules 1 and 3 will apply to M1, but application of rule 3
will destroy the chance for rule 1 to apply. Derivation (20c) isabit perverse, asit derives
M1 in seven steps, when it could have been derived in two, as the derivation itself shows.
Perverse or not, however, it isaperfectly fine derivation. It may be stylistically inept, but it
is nevertheless alegitimate demondtration that M 11 is generated by the system. This
example aso shows that there in general is more than one derivation for each string, so there
is no such thing as the correct derivation of astring. Asone gets good at doing derivations,
it istempting to collapse steps. For example, for (20b) an experienced MIUer might be
inclined to write:

1. Ml initia string
2. M1l (2,2) (for two applications of Rule 2)
3. MIUU (1,3

There's nothing really wrong with this short hand, except that such derivations can
be difficult for less experienced playersto read. So, in the interest of politeness, we hereby
make such abbreviated derivationsillegal. When you are asked to give aderivation, asin
exercise 8, write out every step.

When doing derivations, it is sometimes helpful to work from both ends. For
example, suppose | am asked to derive MIUIUIUIU. | might not see how to get thisright
off, so | might reason asfollows. | could derivethisstring by rule (2) if only | could derive
MIUIU, so my problem now reducesto deriving thisstring. Thus| have so far:

Ml

Syntax, section 1, 16

MIUIU
MIUIUIUIU)

| seethat U'sareintroduced by rule 3. Thus, | apply rule 3 "backwards' to the current line
twice:

MI

MITTII

MIUIII (3)
MIUIU 3
MIUIUIUIU (2)

Now it'sclear that | can getto MIIT111111 by repeated applications of rule 2:
Ml initia string
MII 2
MITII 2
MITTII 2
MIUIII (3)

MIUIU (3)
MIUIUIUIU (2)

Exercise9

Show that the following strings are generated by the MIU system, by displaying derivations
for them.

a MUI
b. MITUU
c. MUUUI

Suppose that | gave you the string UIM and asked you to decide whether or not this
string is generated by the MIU system. One thing you could do is sit down with a pad of
paper (better make it abig one!) and start doing derivations, hoping that sooner or later
(hopefully sooner) the string will show up and you can triumphantly report "yes".
Nevertheless, | venture to think that no one, at least no one who has done exercise 9 would
dream of resorting to thistactic, sinceit's plain that this string will never show up, even if
you sat doing derivations every night until the Chicago White Sox win the American League
Pennant (in other words, avery long time)25.

It's useful to formulate explicitly how we know that UIM will never appear asaline
inalegal derivation. Thetrick, of course, isto stop working within the system and instead
look at it. In thiscase, we consider rule 1, and observe that if the input to this rule has an
initial M, the output will aswell. Rule1is"initial M preserving”. Rule 2 requiresaninitial

15 The White Sox, led by Little Luis Aparicio, Nellie Fox, and the might Ted Kluszewski, last won the
American League pennant in 1959.

Syntax, section 1, 17

M asapart of its structural description, and returns astring that maintainsit. Soitis"initia
M preserving” too. It'seasy to seethat rules 3 and 4 also have this property. Since the one
and only initia string hasan initial M, and al of therulesare "initial M preserving”, it
followsthat every string generated by the MU system will have aninitial M. From this
genera theorem, the fact that UIM is not among the strings generated by the system follows
asatrivia corollary.

The preceding paragraph must seem like an exposition of the obvious, but in other
casesit is not always so clear whether or not a given string is generable by a given system.
When faced with such a problem, it's often a good strategy to first work within the system
for awhile hoping that you suddenly see how to generate the string. If this doesn't work, the
next thing to try might be think of a property the string has that you can show is possessed
by no string generable by the system. That would tell you that the string is not generable.
The more complicated systems get, however, the harder it isto tell whether or not some
strings are generable by those systems. In some cases, in fact, one can show that thereisno
procedure that will work every time. Further discussion of this would take ustoo far afield,
but those who are intrigued might begin to investigate this with one of the math or logic
books mentioned in the bibliography.

Exercise 10

Say why MUIM isnot generable by the MIU system. (As mentioned above, one way to do
this would be to demonstrate something stronger than you need, and then observe that the
result you want trivialy follows from this. For example, one might try to show something
about the number of M sthat can appear in astring.)

Exercise 11

Consider the string M U. If it is generable by the system, give aderivation. If not,
demonstrate this. (This problem may be abit challenging. It isarewarding exercise not to
giveup onit too easily. Give yourself agood chance to solve the problem. For discussion
of it, see GOdel, Escher, Bach.)

[0 Before going on to more interesting languages and techniques for describing them, let's
pause to summarize some of the points mentioned in this section. We saw how languages
could be thought of as sets of strings, and how we can precisely specify the membership of
infinite languagesin afiniteway. Thisisuseful, since natural languages like Hebrew can be
thought of asinfinite sets of strings of words, while the organisms that "know" these
languages arefinite. Finite State Automata are very smple systems for generating
languages. We've aso seen how one can generate infinite languages like the MU system
by writing finite sets of rules. We distinguish between the language generated (the object
language) and the language in which the rules are written (the metalanguage). Rules of the
sort we examined have two parts. structural descriptions, which specify the class of objects
to which the rules can apply, and structural changes, which specify what the rule does.
Membership in alanguage can be demonstrated by a derivation, while nonmembership is
most often demonstrated by constructing an argument from outside of the system whichis
based on the nature of the rules.

Here'salist of some terminology that may have been unfamiliar to you before
reading this chapter. Be sure you have a pretty clear idea of what each term means before
you proceed.

Syntax, section 1, 18

set member alphabet (or vocabulary)
string language (proper) subset
freemonoid generate finite state automata
variable object language metalanguage

substring structural description structural change
strings under an analysis derivation

1.4 The Propositional Calculus

The languages we have considered up to now have been purely pedagogical devices.
We have examined them for no other reason than to illustrate certain basic skillsin
manipulating systems that specify languages. Well turn now to alanguage (actualy, aclass
of languages) that has a more distinguished pedigree, even though our main interest is till
in acquiring skillsfor building systems for describing the syntax of languages.

The Propositional Calculus (sometimes also called the Propositiona Logic, the
Sententia Calculus (or Logic), or the Theory of Truth Functions) wasfirst discussed at
some length by the Stoic philosophers, who flourished in Greece and nearby regions
around the time of Aristotle (3rd and 2nd century B.C.). Much of thiswork waslost or
ignored in Europe in the Middle Ages and through the Renai ssance, and the system was
reinvented by the German philosopher and mathematician Gottlob Frege in the latter half of
the 19th century. Frege's presentation of the system in his Begriffsschrift (Frege 1879) is
commonly regarded as the beginning of the modern era of the study of logic. (For very
interesting accounts of these events, see Delong 1971 or Prior 1962.)

We will postpone for now consideration of why this system was regarded as so
interesting, and concentrate instead on manipulating the syntax of it so asto acquire more
toolsfor the analysis of natural languages. In fact, we will not consider Frege's syntax for
the system at dll, asit is rather awkward and doesn't play any rolein current day linguistic
analyses. Well instead explore various deployments which are closely related to (and
sometimes identical with) treatments that appear in many present-day logic textbooks, most
of which descend from the systems as they were presented in Principia Mathematica, the
great three volume work on logic and mathematics written by Alfred North Whitehead and
Bertrand Russell and published between 1910 and 1913.

| mentioned afew pages back that linguists are keenly interested in the
metal anguages that are used to describe object languages (object languages such as English,
Chinese, Hungarian, etc.). Our god hereisto take the comparatively simple language of the
propositional calculus and introduce a number of devices and techniques that may be
helpful in explicating the structure of awide variety of languages. Later on, we'lll see how
some of these devices and techniques can be applied to natural languages.

Another way in which the propositiona calculus differs from the languages we've
considered so far isthat it has an intended interpretation. By that | mean that most of the
symbolsin the system are really symbolsin the sense that they are meant to stand for
something outside the language itself. We will informally introduce aspects of this
interpretation as we go aong, primarily because thiswill suggest why some of the symbols
are named the way they are.

1.4.1 The Syntax of the Propositional Calculus by means of a Recursive Definition

Syntax, section 1, 19

The vocabulary of the propositional calculus consists of three parts. Thefirst part is
aset of propositional variables or atomic sentences (i.e. sentences which have no internal
parts). These are letters (we will usep, g, and r) that stand for propositions. Roughly
speaking, and setting aside some controversies, a proposition is something that, given a
gituation, is either true or false. We might at first be inclined to identify propositions with
sentences in alanguage such as English. For example, when | am in my office, we say,
"The sentence 'Flynn isin his office' istrue”, and we say the sentenceisfalsewhen | am
someplace else. But thereis some reason to think that propositions are more mysterious
abstract entities. Sentences can be ambiguous, such as the oft cited "Visiting relatives can
be boring", in which case we might be inclined to say that the sentence expresses two
propositions. Also, two different sentences can express the same proposition, asin "Kirby
hit ahome run" and "A home run was hit by Kirby". By "expressing the same proposition”
| mean that we know without having to check that if one of these sentencesistrue, the other
isaswadll, and likewise with falsity. Further, it seems clear that two sentences drawn from
different languages can express the same proposition. Consequently, it appears that thereis
not a one-to-one correspondence between the propositions and the sentences in natural
languages, and therefore we hesitate in identifying them.

Loosely speaking, propositions are the "meanings’ of sentences. If a sentence has
two meanings, we say it expresses two propositions. If two sentences express the same
meaning, we say they express the same proposition. For now, we will discreetly dide
interesting questions about the nature of propositions under the rug. Here's all we know
about them: propositions are expressed by sentences, and, given asituation, they are true or
fase. Sowe let our propositional variables stand for propositions. For example, we might
let p stand for the proposition expressed by the sentence " Snow isfalling (here, now)".
Sometimes thiswill be true, sometimes false.

The second part of the vocabulary for the propositional calculusisthe set of
connectives. These apply to sentences to form other sentences. For our purposes, we will
use only three of these. (Later on, we will consider other connectives and their relation to
these three.) We will have one one-place connective: =. Thisisthe connective for negation
and isread "not". We will aso have two two-place connectives: & (read: "and") whichis
sometimes called conjunction, and v (read; "or") which is sometimes called digunction.
The digtinction between one-place and two-place connectives will become clear in amoment.

Thethird part of the vocabulary consists of the punctuation marks (and).

A definition is something that gives ingtructions (implicitly or explicitly) how to
distinguish the thing being defined from everything else. A recursive definition is one that
sort of "looks back on itself”, much as rulesin the MIU system could apply to their own
output. The following recursive definition of membership in the language of the
propositional calculus, which wewill call PL, has some rules of the if-then variety (Rules 2-
4) and abasisrule (Rule 1) which gives usinitial strings:

Rulel: p, g, andr are sentencesin PL.
Rule2: If aisasentenceinPL, sois-a.
Rule3: If a and B are sentencesin PL, sois (a&).

Rule4: If o and B are sentencesin PL, sois (avp).

Syntax, section 1, 20

Rule5: Nothingisin PL except as specified in Rules 1 through 4.16

This system licenses derivations like the MIU system did. For example:

1L p [1]

2. -p linel, [2]
3..q [1]

4, (=p&Q) lines2,3[3]
3. (pv(-p&q)) lines1,4[4]

There are afew differences between the PL system and the MIU system. For one,
therulesfor PL sometimes take as input two sentences, and therefore it will in genera not
be the case that a particular line in the derivation is licensed by arule and the immediately
preceding line. Thiscallsfor achangein our bookkeeping system. Next to each line, we
now write the numbers of the all the lines which serve as input and the number of the
relevant rule in square brackets. Otherwise things are very much the same as before. Rules
are unordered and may apply anytime their structural descriptions are met, except now the
structural descriptions are stated in terms of afeature of derivationsthat is (as yet) implicit,
namely that every lega linein aderivation isasentencein PL. In the above example, lines 1
through 4 is ademonstration that (=p& q) is a sentence, and thisfact is exploited by step 5.

One principle worth mentioning here, even though it may seem completely obvious,
iswhat | will call The Formality Constraint. This principle says that

ONE CAN ONLY DO WHAT THE RULES SAY.

Obvious as it may seem, this sometimes causes problems, especially in this case for people
who have worked with some version of PL before. For example, some might be tempted to
write line 4 in the above derivation as

-p&q

but this, as President Nixon used to say in another context, would be wrong. Rule 3 says
one must include parentheses, and so, one must. There's agood reason for this feature of
the system (which well see abit later on) but for now, take the Formality Constraint to
heart. One corollary of the Formality Constraint isimportant to notice. If you want asystem
to do something, you need arule, or a any rate some sort of alicensing procedure, that
permitsit. Another way to put thisisthat every step in aderivation must be licensed by an
explicit statement in the recognizing system.

Exercise 12

One reason the Formality Constraint isimportant isthis. If you are trying to write a system
that will generate alanguage, if you don't observe the Formality Constraint you likely won't
be ableto tell if what you propose really does what you think it does, and this might set you
off on wild goose chases that last hours or even decades. It istherefore wise to try to keep
the Formality Constraint in mind. Write out the Formality Constraint fifty times. (Don't

16 We include Rule 5 here just to be explicit that rules 1 through 4 exhaust PL, but from now on we'll take
this clause, which is sometimes called the "restriction” for granted. o and f§ are of course variablesin the
metalanguage, here ranging over sentencesin PL.

Syntax, section 1, 21
hand thisin.) Have aclose personal friend tattoo the Formality Constraint on the inside of
your forearm.

Exercise 13
PL hasinfinitely many sentencesinit. Write out ademonstration of this.
Exercise 14

Give derivations of the following sentences:

a (p&(qv-r))

b. =(-=-qvaq)

C. (r&(q& (p& (ré&p))))
d. ((pva)& = (qvr))
Exercise 156

Parentheses, as you may have noticed, are introduced in pairs. For the sentence(c) in
exercise 14, connect with an arc each parenthesis with its "sibling” so that you get a picture
sort of like a set of kitchen bowls. (This may seem trivial, but we will soon use this property
of PL to demonstrate something more interesting.)

Exercise 16

It can happen that two distinct derivations (distinct in the sense that the rules are applied in a
different order) can nevertheless be derivations of the same sentence. Give a derivation of
(d) in exercise 14 that is distinct from the one you gave in answering that question.

Here's abit more about the interpretation of PL. We don't know much about our
propositions, but we do know this. given a Situation, each one of them is either true of false.
We have only three propositiona variables, but suppose that | tell you that in a particular
situation, p and g aretrueand r isfalse. Given the"pronunciations' of the connectives|
mentioned earlier, you might then suspect that in that situation, among other things, =p is
fase, =ristrue, (p&q) istrue, = (qvr) isfase, etc. Wewant to write explicit rulesthat
specify these interpretations.

Our first rule of interpretation will say of our atomic sentences, i.e. the ones that
have no internal parts on our analysis so far, that they can be either true or false. Adopting a
useful piece of terminology, we will say that each of our atomic sentences denotes a
proposition, and since propositions are elther true or false, each atomic sentence will denote
either The True (T) or The False (F). (Thisisactualy afairly controversial thing to say, but
we set thisaside for now.) These are called "truth values'. For example, suppose our
atomic sentence p denoted the proposition which is also expressed by the English sentence
"It is snowing outside (here, now)." To find out if whether or not p istrue (or, hasthe value
T), one might look out the window. We don't want to fix the interpretation of p once and
for all, but we do want to restrict its interpretation to truth or falsity, and likewise for the
other atomic sentences.

Well then write rules of interpretation that will fix the interpretations of all of the
complex sentences once the interpretation of the atomic constituentsis known. We'll do
this by linking up each rule in the recursive definition with arule of interpretation. This

Syntax, section 1, 22

perhaps sounds a bit more complicated than it is. 1'm confident that after you see the rules
and work through some examples, al of thiswill seem easy.

To emphasize the connection between the rules of the syntax and the interpretation,
I've reproduced here the rules from above, and added arule of interpretation (marked with
an"a', for each.

Rulel: p, g, andr are sentencesin PL.

Rule 1a The atomic sentences denote either T or F.

Rule2: If aisasentenceinPL, sois —a.

Rule2a: If a denotes T, then —a denotes F. If a denotes F, then —a denotes T.

Rule3: If a and B are sentencesin PL, sois (a&).

Rule3a: If o denotes T and denotes T, then (a& B) denotes T. Otherwise (a& B)
denotes F.

Rule4: If o and p are sentencesin PL, so is (avp).

Rule4a: If a denotes F and B denotes F, then (avp) denotes F. Otherwise (av) denotes
T.

These interpretations correspond rather well with our English readings of these connectives.
A true sentence prefixed by "not" becomes afase one, and vice versa. A sentence formed
by connecting two true sentences with "and" will be true, and false if either part (sometimes
called aconjunct)isfalse. A sentence formed by connecting two false sentences with "or"
will befase, and trueif either part (sometimes called adigunct) istrue. (This corresponds
to the so-called "inclusive" sense of the English "or", on which the compound sentenceis
truein case either or both of the digunctsistrue.)’

Exercise 17

Assuming that p istrue, q isfase, and r istrue, compute the truth values for each of the
sentencesin exercise 14.

The parentheses play arole in keeping PL unambiguous, where "ambiguity” in this
context would be an instance in which fixing the interpretation of the atomic sentences
would fail to fix aunique interpretation of the complex sentence. They play asimilar rolein
arithmetic. In the absence of often used disambiguating conventions, a statement like
"5+ 3 x 2" would be ambiguous between one reading on which the value is 16, and the
other on which thevalueis 11. We can disambiguate the string by inserting parentheses
around the operation to be performed first, e.g. " (5 + 3) x 2".

17 The "exclusive" sense of "or" is said to make a compound sentence false when both disjuncts are true.
It's not completely clear that English has this sense of "or" but you can get afeel for it by pondering the
standard interpretation of the sentence "Y ou can write afinal paper or you can take a final exam."

Syntax, section 1, 23

Exercise 18

Consider the sequence p& —pvq. There are three ways of inserting parentheses in this
sequencein order to make it well formed in PL. What are they?

Exercise 19

Give the derivations that correspond to each of the sentences you gave in your answer to
exercise 18.

Exercise 20

Would the sequence given in exercise 18 be ambiguous, given the rules of interpretation
above (and overlooking the parentheses, of course)? By "ambiguous’ here | meanisit
possible, given a constant interpretation of p and q, for the string as awhole to denote both
T and F? (This corresponds to the English example “Visiting relatives can be boring”
which can be simultaneoudly true and false even while the meanings of the words stay
constant.) Justify your answer.

0 Well turn now to developing more tools for describing the syntax of languages. Before
we do that, though, let's again look ahead to glimpse the relevance of what we have just seen
for the analysis of natural languages. The example of PL shows usthat the nature of a
derivation can change from system to system. Though every line of aderivation in PL hasto
bejustified by arule and what came before, thisjustification can involve any previousline,
rather than just the immediately preceding line asin the MIU system. Furthermore, by
fixing the interpretation of the "atoms' p, g, and r, wefix the interpretation of all sentences
recognized by the system. Notice that, even though there are infinitely many well formed
sentencesin PL, once you find out the truth values of the atomic sentences you can
determine the truth value of any of the sentences. Thisis anaogousto natural languages
like English, in that once you know the rules of the language and learn the meanings of the
words, you can compute the meaning of any sentence. The Situation in natural languagesis
surely more complicated, since the languages are more complex and the relevant sense of
the notion of "meaning” is perhaps not so clear. But we can now seeto afirst
approximation how it is possible for people to understand sentences they have never heard
before. Once you know the meaning of the words, you can use the rules of the language to
compute the meaning of any sentence in that language. Thisis one very strong reason to
believe that when people acquire languages (and I'm thinking here of first languages) what
they acquireisarule system. We will return to thisissue at some length later on.

Another difference between PL and MIU isthat the vocabulary of PL is
differentiated, in the sense that different parts of the vocabulary play different rolesin the
language. The connectives can be thought of as "bonding agents' for sentences both simple
and complex, amost like achemical bond. The parentheses, on the other hand, a devices that
encode the derivationa history of the string, in away that will become clear in the next
section.

1.4.2 Trees

If you think about the results of exercises 18 through 20, and compare these with
theissueraised in exercise 16, it becomes clear that the order of application of somerulesin
some cases isrelevant to the interpretation of the sentence, while the order of application in
other casesisirrelevant. What the parentheses do is encode just those aspects of the

Syntax, section 1, 24

derivational history of the sentence that may make a difference in the sentence's
interpretation. Consider, for example, a sentence like

(= (p&q)vr).

Just looking at this, | can see the relative order in which some rules had to be applied to
derive this sentence, but the relative order of application of other rulesisimpossible to fix
with certainty. For example, | know that rule 2 (the rule adding =) had to apply before rule
4 (the rule introducing v), and this has an effect on the interpretation of the sentence. On
the other hand, | cannot tell whether or not p (or even (p& q)) was introduced beforer, but
thiswill not make any difference in the sentence's interpretation. What's crucial, as you can
probably see after doing the exercises, isthe order in which the connectives get "inserted”.
In the above example, the order hasto be &, =, v.

It's convenient to have a notation that will encode just those aspects of the
derivationa history that are potentially relevant to the sentence's interpretation, and linguists
and philosophers have developed severa of these. Let's use sentence (d) from exercise 14
(which isrepeated here) as an example in seeing how these notations work.

(14) d. ((pvg)& = (qvr))

One kind of representation is called an analysistree. The analysistreefor (14d)
appearsin (21):

Syntax, section 1, 25

(21)

{{(pvq)&{qv1)) 3

T

{pvq), 4 —{qv1), 2
p,1 q,1 {qv1), 4
q, 1 I, 1

We borrow some terminology from the arboretum in talking about such (inverted) trees.
Thelinesin the tree are called branches and the place where a branch comes together with
another (or whereit ends) is called anode. In the diagram above, I've placed next to each
node the number of the rule which licenses that node. These numbers are not, strictly
gpeaking, apart of thetree. They are there only to help you check to see whether I've
followed the rules correctly. The rules themselves have to be reinterpreted in a
straightforward way. We now say that anode is permitted if it follows from the nodes
below it on the tree by one or another of the rules.

Anaysistrees are constructed "from the bottom up". If you compare this tree with
the derivation you gave for thisstring in exercise 12, you'll see that we've lost abit of
information, but the lost information isn't relevant to the interpretation of the sentence. For
example, we cannot tell from looking at the tree whether the node (pvq) was constructed
before or after the node = (qvr), but thisisirrelevant. What isrelevant is that, for example,
on the right hand branch rule 4 was applied before rule 2, and thisinformation is easily
recoverable by looking at thetree. In asense, trees correspond to blueprintsfor a
construction project, as opposed to step-by-step instructions. If you're building atable,
what's relevant isthat you have four legs and a top, but the order in which you attach the
legsto thetop isn't relevant.

Y ou may have noticed that thetreein (21) is redundant. The information that rule 4
was applied before rule 2 on the right hand branch is represented in two places. It appears
inthetreeitsalf, and dso in array of parentheses in the topmost node. Now that we have
analysis trees, we can eliminate the parentheses without introducing any ambiguity. To do
this, we'd go back to the rulesfor PL and take out all the parentheses. The tree for (14d)
would then look like the onein (22).

Syntax, section 1, 26

(22)

Pp¥qQ &~ Q¥ 3 F

T

pvq ,4 T 1 gQvr ,2 F
p;lT q'lT q":" T
q;lT r’l F

I've taken out the parentheses here, but |'ve added something €l se, namely, apossible
interpretation for the sentence. | assumed (arbitrarily) that p and g are both true, and r
fase. Thereare, of course, other possible interpretations, but oncel fix the anaysistree and
the assignment of truth values to atomic sentences, the truth value of the topmost sentenceis
determined. Every (sentence, analysistree) pair will be unambiguous.

If | take the structurein (22) and erase al but the topmost node, the sentenceis
ambiguous. Now we can give afirst approximation of the notion of structural ambiguity.
A sentenceis structurally ambiguousif it has more than one analysistree.

Exercise 21

Draw the analysis tree for one "other reading" of pvg&-qvr.

We don't have all the equipment to describe thisfully yet, but this Situation is one
that is frequently encountered in natural languages. Consider for example the sentencein
(23).

(23) Old cars and trucks must be inspected by the police.
If 1 own abrand new pickup, | might wonder whether or not this directive appliesto me.

The reason for thisisthat the phrase "old cars and trucks' is structurally ambiguous, which
isto say that it has both the analysistreesin (24).

(24)

old cars and trucks

/\

old cars trucks

N

old cars

old cars and trucks

RN

old cars and trucks

N

cars trucks

Syntax, section 1, 27

I've suppressed information here (such as the categories of these items and how the word
"and" getsinto the tree) that we eventually would want to supply, but even so it should be
easy for you to see how we will explain the structural ambiguity of this phrase. Asyou
might suspect, it's on reading (a) that | have to get my new pickup inspected, while on
reading (b) it's exempt.

Exercise 22

Giveadl the analysis trees (without parentheses) that can be associated with the sequence in

exercise 18.

Pondering the analysis trees, we might notice that there is one piece of information
about this group of nodes that we could make explicit, namely, that each nodein thetreeisa
sentence. (It's perhagps unclear now why we might want to make this explicit, since the way
our system is set up, every node in atree will be a sentence, so thereisno harmis
suppressing thisfact in our representations. However, later on we will see that there is often
good reason to explicitly represent this sort of categoria information.) A very popular kind
of treethat gives a straightforward picture of this"isa' relation is called a phrase structure
tree or aphrase marker. Consider then the phrase marker for (14d):

(25)

Syntax, section 1, 28

,////SN
T N\
| | /L\S
|

P q |S

q I

Thetreein (25) gives all the information that the one in (22) does, plusit explicitly
represents the fact that substrings like pvq are sentences. Before we discussthis, let's
introduce some helpful terminology. These terms can be defined quite precisely?8 but if we
agree to orient our trees from the topmost S downwards on the page, we can get by with the
following informal definitions which will do quite well for our purposes. Nodes and
branches are defined as before.

dominance: If from anode A one can move continuously downward (i.e. never turning
upward) to reach anode B, then we say that A dominates B.

immediate dominance: If anode A dominates anode B, and thereis no node C such that A
dominates C and C dominates B, then we say that A immediately dominates B.

sisterhood: If two or more nodes A1,...,An areimmediately dominated by the same node
B, thenwe say that A1,...,An aresisters.

daughterhood: If anode A isimmediately dominated by anode B, then we say that A isthe
daughter of B.

root: Theroot of the tree is the topmost node.
leaf: The leaves of the tree are the bottommaost nodes.
There's nothing intrinsically special about these definitions. They smply make trees easier

to talk about. We can (and will) invent other terms to describe rel ations between nodes as
we need them. Here's some practice with these terms.

18For details, see one or another of the mathematical linguistics textbooks such as Wall 1972.

Syntax, section 1, 29

Exercise 23
For thefollowing tree, list

a. theroot

b. the leaves

c. the nodes that C dominates

d. the nodes that C immediately dominates
e. thesistersof B

f. the daughters of B

0. thesistersof G

AN\
FANWARNN

Exercise 24

If anode A isasister of anode B, isit aways the case that any node C which dominates A
will aso dominate B?

With thisterminology in hand, let's return to our phrase marker (25). The parts of
the sentence generated appears at the leaves of the tree. It's easy to see how this phrase
marker encodesthe "isa" relation. A node together with al of itssistersis a whatever the
label is on the immediately dominating node. For example, the sequence -, q, v, r isan S.
The sequence &, = isn't anything at all. Here's an important notion: each nodein the tree
determines a constituent, or, as we might say, arecognizable chunk of stuff. More formally,

congtituent: All nodes dominated by some node A taken together form a constituent (of
type A).

In the tree of exercise 21, F, G, and H (and everything they dominate) form a constituent of
typeC. F, G, and | do not form a congtituent because there is no node which dominates
them and only them. (C also dominatesH.)

Syntax, section 1, 30

Exercise 25

Recalling the other sentences from exercise 14 (which are repeated here), give phrase
markers for their " de-parenthesized” versions along the lines of (25).

a (P& (qv=r))

¢ (r&(q&(p&(r&p))))

[0 We've seen that trees encode various aspects of a sentence's derivationa history, i.e. it
displays which rules were applied when in the construction of the string, just like
parentheses do in our origina version of PL. We looked at two kinds of trees. Analysis
trees are constructed "from the bottom up", the node labels themselves are strings in the
language, and categorial information is usually suppressed. Phrase structure trees, or phrase
markers, are constructed "from the top down", and node labels usually are indications of the
category membership of the dominated material. We will mostly deal with phrase markers
from here on out, but we should be aware of the option of analysistreesin case we find they
would be useful. Both kinds of trees display the structure of strings. A given string might
be associated with two or more structures by a given grammar, in which case we say that the
string is structurally ambiguous.

1.4.3 Phrase Structure Rules

Though the phrase markers we've been working with accurately display the results
of applying the rulesfor PL last given on p. 19, it turns out to be useful to have a specia
format for rulesthat generate trees. While our analysistreesfollowed aderivationina
"bottom-up" fashion, phrase structure rules generate trees "top-down". 1n this method, one
starts with the topmost node, and works down towards the smallest parts of the structure.
Collections of phrase structure rules are called phrase structure (PS) grammars. Here'sa
PS grammar for PL:

(26) A PSGrammar for PL (Version 1)

1.S>-S
2.5->S& S
3.S->SvS
4.S->p
5.S->¢
6.S->r

(I've numbered the rules for convenience. They are not to be regarded as ordered in any
way.) Theseruleslicense the construction of phrase markersin the following way: By
convention we begin with the symbol S.

27) S

We then find any rule which has an S on the left side of the arrow and apply that rule by
writing the symbols on the right side of the arrow underneath the S and connect each of
these symbols to the Swith lines. Thisis sometimes called "expanding” or "rewriting" a
node. For example, if we apply rule 5, we get:

Syntax, section 1, 31

(28)

Thistree"says' that g isan S(i.e. asentence). Since q does not appear on the left side of
any rule (these symbols are sometimes called terminals), this phrase marker cannot be built
any further. We say that it isterminated. Suppose instead we had chosen rule 2:

(29)
S
S & S

Now we can expand the other two S nodes, again by choosing any rule that hasan S on the
left side of the arrow, and continue this until the bottom nodes can no longer be expanded
by any rule. The following completion of the tree should be easy to follow:

(30)
S
SR
] q I

In our original PL system, this would be the sentence (-=p& (qvr)). Both say more or less
the same thing. In fact, we could make them exactly equivaent by adding node labelsto the
parentheses. When linguists do this, its common practice to use square brackets instead of
parentheses. So, an alternative representation of the treein (30) is (31):

(Bl) [sls=I[spll & [s[sa]lVvIsr Il

Which representation one chooses, trees or labeled bracketing, usualy depends on what will
be easiest to read. In this case, you probably find the tree easier to absorb, but if | was keen

Syntax, section 1, 32

to emphasize (for some reason) that r in (30) is"three Ssdown™, | might choose alabeled
bracket notation, and leave irrelevant parts of it out to help you focus on thisfact better:

B2 [s..[s.[sr]ll

It's very helpful to get very good at trandating from the tree notation to labeled brackets and
back again.

Exercise 26

Draw three trees generated by the grammar in (26) that you have never seen before. Give the
equivalent representations in labeled bracketing.

We've now modified our metalanguage so that we explicitly represent the fact that in
PL stringslikep, =r, and g& p are sentences. Our loya and hard-working connectives
might be feeling a bit neglected, so in an egalitarian spirit (and with forthcoming ulterior
motives up our seeve), let's assign them to categories aswell. We could of course choose
any labelsfor these categories we like, so we'll choose onesthat (like S) abbreviate our
English names for these categories. 1CON and 2CON.

(33) A PS Grammar for PL (version 2)

S->1CON S
S->S2CON S

1CON -> =
2CON -> &
2CON > v
S->p
S->¢
S->r

Exercise 27

Givetrees generated by the grammar in (33) that correspond to those you drew in exercise
25.

In the grammar in (33) I've separated the rules into two groupsin order to draw your
attention to a distinction we might make between types of rulesin this system. To
characterize this distinction, think of how you might describe PL to someone. Y ou might
say, "There are three kinds of categoriesin PL, sentences, one-place connectives, and two-
place connectives. Asfor the architecture of complex sentences, one-place connectives
precede the sentences they go with, and two-place connectives appear between the two
sentences they go with." Pursuing the analogy with natural languages we introduced earlier,
we might say that there are three kinds of "words" in PL, atomic sentences and the two
kinds of connectives. The rulesin the second group in (33) serve to introduce the "words"
into trees. Thetwo rulesin the first group specify the structure of the complex sentences.

Thelist of wordsin alanguage is sometimes called the lexicon, and we can call the
rulesin the second group lexical insertion rules, since they insert lexical itemsinto trees.
Y ou might have the intuition that modifications of the lexica insertion rules wouldn't change
the fundamental structure of the language very much. For example, adding a new atomic

Syntax, section 1, 33

sentence with arule S-> t israther like an English speaker learning a new word.
Technicaly, of course, this does change the language generated, but the new one overlaps
with the old so much that we still might regard the two languages as being in some basic
sense the same. Changing or adding to the first group of rules, on the other hand, would
seem to change the language in amore radical fashion.

We can recognize this distinction while at the same time streamlining our grammar
of PL by making athird change in the metalanguage. We separate the rules into two
components. The Lexical Component consists of rules which list the terminal symbols and
their categories. It israther like (and sometimesis called) adictionary. The Phrase
Sructure Component consists of rules the specify the structure of complex sentences.
These rules most often have at |east two category (or nonterminal) on the right side of the
arrow.

(34) A PS Grammar for PL (Version 3)
Phrase Structure Component:

S->1CON S
S->S2CON S

Lexica Component:

S p,qr
1CON: =

2CON: & v

We read the Lexicon as follows. The symbol to the left of the":" isthe category of each of
theitemsto theright. When constructing atree, we are allowed to insert any item of given
category underneath the node of the tree which matches the category of the given item.

This change in the metalanguage doesn't change PL at all. It only alters our view of
how derivations proceed. They now have two distinguishable parts. In thefirst part, the PS
rules generate atree such asthat in (35).

(35)
S
S 2CON S

AN N

1CON 3 S 2CON S

Syntax, section 1, 34

Then the lexical component inserts appropriate termina symbols underneath what we might
call the preterminal nodes of the tree (i.e. those nodes which immediately dominate lexical
items).

Our metalanguage now gives us an easy way of distinguishing what is surely two
very different processesin natural languages. Learning (or forgetting) aword is now
characterizable as an addition to (or deletion from) the lexicon.

Exercise 28

Suppose | tell you that = is atwo-place connective, ® isaone-place connective, and sisan
atomic sentencein PL. Which of the following iswell formed according to the grammar in
(34)? For thosethat are, give atree generated by that grammar, assigns a structure.

a p=q&®s
b. p®s=q

C. =p& Vr
d. ®®@p=s=r

1.4.4 The Fable of the Planet of the Propositional Logic Speakers

To get apicture of the second kind of rule modification in natural languages, let's
indulge oursalves with a bit of fancy.

On aplanet far far away in another galaxy, there lives agroup of creatures that speak
languages not unlike our old friend PL. | won't describe their physical appearance and you
are invited to imagine them how you wish. On this planet, there are many different
countries and there are many different languages, with wildly diverging sound systems and
orthographic conventions. We'll actually smplify matters somewhat by giving sentencesin
these languages that are to be read from left to right, asin English.

One group speaks a language called Camestres which happensto be exactly like PL,
including the additions made in exercise 28. Camestranians obviously don't talk about
much, and the extent of their thought processes is an open question.

Not far from the Camestres speakers lives a group that speaks Bocardo. The PS
component for Bocardo is the same as Camestres, but the lexicon looks quite different.
Here's some trand ations:

(36) Glosses between Camestres and Bocardo:

Camestres Bocardo

<@p®IN-QDT
—<oNMTO®-H

Syntax, section 1, 35

™

Even though their orthographies are quite different, the pronunciations of the languages are
identical, and this has tended to intertwine the two economies, with al the usual resulting
frictions.

Exercise 29

Trandate the following sentences into Bocardo.

a p&qv-r
b. pvq& =~ qvr
C. ®®p=s=r

The relation between Camestres and Bocardo is rather straightforward (and hence
rather uninteresting). For example, both languages have ambiguous sentences, which both
groups regard as a va uable feature of the languages. But the relation between both of these
languages on the one hand and Fresison on the other ismore intriguing. Fresison has a
lexicon and orthography exactly like Camestres, but instead of therule S-> S2CON S,
Fressonhas S->2CON S S. In other words, instead of the two-place connectives
appearing between the two sentences they connect, in Fresison all the connectives appear
before the sentences they apply to.

Exercise 30

Trandate the sentencesin exercise 29 into Fresison, and give the trees for the trandations.
There may not be a unique trandation, since asyou'll recall, sentencesin Camestres are
sometimes ambiguous. In Fresison, it turns out, no sentences are ambiguous (the
Fresisonians take this as a particular source of pride), and consequently it is often the case
that a perfectly faithful trandation isimpossible. So for this exercise, pick one or another of
the readings of the ambiguous strings in Camestres for trandation, and indicate which
reading you've chosen by drawing atree for the Camestranian sentence.

Asyou might imagine, thislittle linguistic tour of this bizarre planet could rapidly
become quite complicated, but we will be content to survey just one more language, namely
Bramantip. Bramantip, like Fresison, has a vocabulary, phonology, and orthography
identical to Camestres, but it's PS Component looks like this:

The PS Component for Bramantip:

S->S1CON
S->SS2CON

Exercise 31

Trandate the sentence in exercise 29 into Bramantip. (Bramantip, like Fresison, also hasno
ambiguous sentences, so the same instructions from exercise 27 apply here. While doing
this exercise you may see why the Bramantipites think the Fresisonians do everything
backwards, and vice versa)

Were we to venture further, we would encounter apparent limitless diversity, what
with all the varying orthographies, pronunciations, modifications of vocabulary and

Syntax, section 1, 36

variations on the PS rules. But from our point of view, we can see that beneath thisrich
diversity thereisafundamental sameness. All of these languages areredlly variationson a
single theme. Thisis something that the inhabitants of the planet might find worth
knowing.

Bibliography
Chomsky, Noam (1957) Syntactic Sructures. The Hague: Mouton.

Delong, Howard (1971) A Profile of Mathematical Logic. Reading, Mass.: Addison-
Wesley Publishing Company.

Frege, Gottlob (1879) Begriffsschrift. (Chapter 1 appearsin English trandation in Peter

Geach and Max Black (eds.) Trandlations from the Philosophical Writings of
Gottlob Frege. Oxford: Basil Blackwell, 1970.)

Gleitman, LilaR. (1981) "Maturational Determinants of Language Growth," Cognition 10:
103-114.

Hofstadter, Douglas R. (1979) Godel, Escher, Bach: An Eternal Golden Braid. New Y ork:
Vintage Books.

Lewis, Harry R. and Christos H. Papadimitriou (1981) Elements of the Theory of
Computation. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Prior, A. N. (1962) Formal Logic. Oxford: Oxford University Press.

Wall, Robert (1972) Introduction to Mathematical Linguistics. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc.

Whitehead, Alfred North and Bertrand Russell (1910-1913) Principia Mathematica.
Cambridge: Cambridge University Press.

Syntax, section 1, 37

Index (only thefirst mention of an item isindexed)

aphabet 2
analysistree 24

arcs7

asterisk 5

atomic sentences 18
Bocardo 33

Bramantip 34
branches 24
Camestres 33

Carleton Knights 12
Chicago White Sox 16
components 32
concatenating 4
congtituent 28
daughterhood 27
denotes 21

derivationa history 23
derivations 14
dominance 27
elements 1

empty 4

fa7

factor 13

final states 6

finite state automata 6
formal systems 1
freemonoidonV 4
Frege 18

Fresison 34

generate 5

identity of aset 2
immediate dominance 27
initial state 7

initial string 14

isa28

language 3

leaf 27

Lexica Component 32
lexical insertion rules 31
lexicon 31

list notation 1
members 1
metalanguage 12

MIU system 11

node 24

null 4

object language 12
phrase marker 26
phrase structure (PS) grammars 29
Phrase Structure Component 32

phrase structure rules 29
phrase structure tree 26
predicate notation 2
preterminal 32
PrincipiaMathematica 18
proper subset 4
proposition 18
Propositional Calculus 18
propositional variables 18
recursive definition 19
root 27

Russell 18

setl

sisterhood 27

states 6

string 2

strings under an analysis 14
structural ambiguity 25
structural change 13
structural description 13
subset 4

substring 12

terminals 30

variable 11

vocabulary 3

Whitehead 18

¢ 4
c4
c4
24
€1l

